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ABSTRACT

The development of nonlinear surface and internal wave
groups Is investigated. Surface wave evolution was observed
in an unusually long wave channel as a fvanction of steepness
and group length. Dissipation and frequency downshifting were
important characteristics of the long-time evolution. The
amplitude and phase modulations were obtained using the
Hilbert transform and specified as an initial conditioni to the
cubic nonlinear Schrodinger equation, which was solved
numerically. This equation is known to govern the slowly
varying complex modulation envelope of gravity waves on deep
water. When dissipation was included, the model compared
quite well with the observations. Phase modulation was used
to interpret the long-time behavior, using the phase evolution
of exact asymptotic solutions as a guide. The wave groups
exhibited a long-time coherence but not the recurrence
predicted by the inviscid theory.

An oceanic field study of the generation of groups of
large amplitude internal waves by stratified tidal flow over a
submarine ridge indicates that the large amplitude and
asymmetry of the topography are critical in determining the
type of flow response. The calculated Froude numbers.
response length scale and duration differ markedly between the
two phases of the tide due to the asymmetry.
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DESCRIPTION OF FIGURES

2.1 Experimental facility. Outdoor flood plain. Bay
St. Louis, MI.

2.2 Orientation of wavemaker and wave channel within the
100 by 340 meter basin and the profile of the
hyperbolic forward face of the wavemaker.

2.3 Wave group development with fetch for a group of 10
waves of initial steepness ak - .03 (Exp 78).
Amplitude is in centimeters of surface displacement
(mean removed). Fetch increases upwards.

2.4 Wave group development with fetch for a group of 25
waves of initial steepness ak n .07 (Exp 77).

2.5 Wave group development with fetch for a group of 10
waves of initial steepness ak = .10 (Exp 86).

2.6 Wave group development with fetch for a group of 15
waves of initial steepness ak - .LO (Exp 87).

2.7 Wave group development with fetch for a group of 25
waves of initial steepness ak a .10 (Exp 88).

2.8 Wave group development with fetch for a group of 15
waves of initial steepness ak - .15 (Exp 62).

2.9 Wave group development with fetch for a group of 10
waves of initial steepness ak a .16 (Exp 21).

2.10 Wave group development with fetch for a group of 15
waves of initial steepness ak a .16 (Exp 22).

2.11 Wave group development with fetch for a group of 25
waves of initial steepness ak * .16 (Exp 23)

*i. *. * *. * .. .-
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2.12 Maximum entropy (MEM) spectral evolution with fetch for

a group of 10 waves of steepness ak - .03 (Exp 78).

Fetches as indicated. Group was bandpassed on the

interval (.3,1.3)hz centered on the initial carrier

frequency 0.80 hz. Filter rolloff occurs at the
bandedges.

2.13 Maximum entropy (MEM) spectral evolution with fetch for
a group of 25 waves of steepness ak = .07 (Exp 77).

Fetches as Indicated. Group was bandpassed on the

interval (.5.1.5)hz centered on the initial carrier

frequency 0.96 hz. Filter rolloff occurs at the
bandedges.

2.14 Maximum entropy (MEM) spectral evolution with fetch for

a group of 25 waves of steepness ak = .10 (Exp 88).
Fetches as indicated. Group was bandpassed on the

interval (.5.1.51hz centered on the initial carrier
frequency 0.96 hz. Filter rolloff occurs at the
bandedges.

2.15 Same as previous (2.14) except data is unfiltered and

spectrum is done on larger interval (.1.3.Ohz. Notice
the first harmonic peak, the loss in resolution of

sidebands (15.2 m) and the removal of spurious peaks at

the bandedges of the filter.

2.16 Maximum entropy (MEM) spectral evolution with fetch for

a group of 15 waves of steepness ak = .15 (Exp 62).
Fetches as indicated. Group was bandpassed on the
interval (.7.1.7]hz centered on the initial carrier

frequency 1.20 hz. Filter rolloff occurs at the
bandedges.

2.17 Maximum entropy (MEM) spectral evolution with fetch for

a group of 25 waves of steepness ak - .16 (Exp 23).
Fetches as indicated. Group was bandpassed on the

interval (.7.1.71hz centered on the initial carrier

frequency 1.20 hz. Filter rolloff occurs at the
bandedges.

2.18 Same as previous (2.17) except data is unfiltered and

spectrum is done on larger interval (.1.3.0]hz. Notice

E-i

n m m su m m m ma,.,mn smlumm lma-, ,.-a: . . . ... . 7 ... _. .
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the first harmonic peak (6.1 m), the loss in resolution
of sidebands (30.5 m) and the removal of spurious peaks
at the bandedges of the filter.

Logarithm of packet energy normalized by its initial
value plotted versus fetch for a wave group of 10
waves, ak = .03 (Exp 78). Least squares line fit to
data is also shown.

Logarithm of packet energy normalized by its initial
value plotted versus fetch for a wave group of 25
waves. ak = .07 (Exp 77). Least squares line fit to
data is also shown.

Logarithm of packet energy normalized by its initial
value plotted versus fetch for a wave group of 25
waves, ak = .10 (Exp 88). Least squares line fit to
data is also shown.

Logarithm of packet energy normalized by its initial
value plotted versus fetch for a wave group of 15
waves. ak = .15 (Exp 62). Least squares line fit to
data is also shown.

Logarithm of packet energy normalized by its initial
value plotted versus fetch for a wave group of 25
waves, ak = .16 (Exp 23). Least squares line fit to
data is also shown.

Amplitude, phase and frequency modulations at 6.1 m for
a group of 10 waves of initial steepness ak = .03 (Exp
78). Amplitude modulation is in centimeters, phase
modulation is in radians and frequency modulation is in
radians/sec.

Amplitude, phase and frequency modulations at 30.5 m
for a group of 10 waves of initial steepness ak - .03
(Exp 78).

Amplitude, phase and frequency modulations at 61.1 m
for a group of 10 waves of initial steepness ak - .03
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(Exp 781.

2.27 Amplitude, phase and frequency modulations at 91.4 m
for a group of 10 waves of initial steepness ak = .03
(Exp 78).

2.28 Amplitude, phase and frequency modulations at 106.7 m
for a group of 10 waves of initial steepness ak = .03
(Exp 78).

2.29 Amplitude, phase and frequency modulations at 137.2 m
for a group of 10 waves of initial steepness ak = .03
(Exp 78).

2.30 Amplitude, phase and frequency modulations at 6.1 m for
a group of 15 waves of initial steepness ak = .10 (Exp
87).

2.31 Amplitude, phase and frequency modulations at 30.5 m
for a group of 15 waves of initial steepness ak a .10
(Exp 87).

2.32 Amplitude, phase and frequency modulations at 61.1 m
for a group of 15 waves of initial steepness ak = .10
(Exp 87)

2.33 Amplitude, phase and frequency modulations at 91.4 m
for a group of 15 waves of initial steepness ak - .10
(Exp 87).

2.34 Amplitude, phase and frequency modulations at 106.7 m
for a group of 15 waves of initial steepness ak - .10
(Exp 87).

2.35 Amplitude, phase and frequency modulations at 137.2 m
for a group of 15 waves of initial steepness ak a .10
(Exp 87).

2.36 Amplitude, phase and frequency modulations at 6.1 m for
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a group of 25 waves of initial steepness ak .16 (Exp23).

2.37 Amplitude, phase and frequency modulations at 30.5 m
for a group of 25 waves of initial steepness ak = .16
(Exp 23).

2.38 Amplitude, phase and frequency modulations at 61.1 m
for a group of 25 waves of initial steepness ak = .16
(Exp 23).

2.39 Amplitude, phase and frequency modulations at 91.4 m
for a group of 25 waves of initial steepness ak = .16
(Exp 23).

2.40 Amplitude, phase and frequency modulations at 106.7 m
for a group of 25 waves of initial steepness ak a .16
(Exp 23).

2.41 Amplitude, phase and frequency modulations at 137.2 m
for a group of 25 waves of initial steepness ak = .16
(Exp 23).

2.AI Block diagram of data processing sequence.

3.1 Numerical evolution of a steeper-than-soliton initial
profile (1/2-soliton). The magnitude of the complex
envelope is plotted in a spatial frame that propagates
at the linear group velocity. -12.5 < X < 12.5. The
length of the time evolution corresponds to T - 10.

3.2a Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the 1/2-soliton initial condition.

3.2b Evolution of the principal value of the phase
modulation, normalized by pi. at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.2a.

-- , ° .. - . . , . . . . . . . . .. .. -- I .



3.3a Superposition of amplitude modulation at 4 different
times. T 0 0, 2, 6. 10. corresponding to the
1/2-soliton initial condition.

3.3b Superposition of phase modulation at 4 different times,
T = 0, 2, 6, 10, corresponding to the amplitude
modulation superposition of fig. 3.3a.

3.4 Numerical evolution of a one-soliton initial profile.
The magnitude of the complex envelope is plotted in a
spatial frame that propagates at the linear group
velocity, -12.5 < X < 12.5. The length of the time
evolution corresponds to T = 10.

3.5a Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the 1-soliton initial condition.

3.5b Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.5a.

3.6a Superposition of amplitude modulation at 4 different
times, T = 0, 2. 6, 10, corresponding to the I-soliton
initial condition.

3.6b Superposition of phase modulation at 4 different times.
T = 0, 2. 6, 10, corresponding to the amplitude
modulation superposition of fig. 3.6a.

3.7 Numerical evolution of a two-soliton initial profile.
The magnitude of the complex envelope is plotted in a
spatial frame that propagates at the linear group
velocity, -12.5 < X < 12.5. The length of the time
evolution corresponds to T = 30.

3.8a Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the 2-soliton initial condition.

r: ::. -./ .- > -.- " : " ., i " i~ :i. i: .! : :i : : : : ii ; i .:... : . -" '
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3.8b Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.8a.

3.9a Superposition of amplitude modulation at 4 different
times, T a 0. 6.3. 12.6. 18.9. corresponding to the
2-soliton initial condition.

3.9b Superposition of phase modulation at 4 different times.
T ' 0. 6.3. 12.6. 18.9, corresponding to the amplitude
modulation superposition of fig. 3.9a.

3.10 Numerical evolution of a soliton plus radiation
(3/2-soliton) initial profile. The magnitude of the
complex envelope is plotted in a spatial frame that
propagates at the linear group velocity. -12.5 < X <
12.5. The length of the time evolution corresponds to
T a 30.

3.1la Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the 3/2-soliton initial condition.

3.11b Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.11a.

3.11c Further evolution of the magnitude of the complex
envelope plotted at 7 successive time steps (time
increases upwards) for the 3/2-soliton Initial
condition.

3.11d Further evolution of the principal value of the phase
modulation, normalized by pi. at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.11c.

, .. . - . . . .. . : . ., . " . . ., , . . . - ..- •. -.
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3.12 Numerical evolution of a bound state plus radiation
(5/2-soliton) initial profile. The magnitude of the
complex envelope is plotted in a spatial frame that
propagates at the linear group velocity. -12.5 < X <
12.5. The length of the time evolution corresponds to
T a 30.

3.13a Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the 5/2-soliton initial condition.

3.13b Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.13a.

3.13c Further evolution of the magnitude of the complex
envelope plotted at 7 successive time steps (time
increases upwards) for the 5/2-soliton initial
condition.

3.13d Further evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.13c.

3.14a Superposition of amplitude modulation at 4 different
times, T a 0. 6.3, 12.6. 18.9. corresponding to the
5/2-soliton initial condition.

3.14b Superposition of phase modulation at 4 different times.
T = 0. 6.3. 12.6. 18.9. corresponding to the amplitude
modulation superposition of fig. 3.A4a.

3.15 Numerical evolution of divergent solitons from an
antisymmetric initial profile corresponding to figure 5
of Satsuma and Yajima (19741. The magnitude of the

complex envelope is plotted in a spatial frame that
propagates at the linear group velocity, -12.5 < X <
12.5. The length of the time evolution corresponds to
T .30.

• 7., -:' - ' ' . ' . ' .
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3.16a Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases

7 upwards) for the divergent solLton initial condition.

3.16b Further evolution of the magnitude of the complex
envelope plotted at 7 successive time steps (time
increases upwards) for the divergent soliton initial
condition.

3.16c Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.16a.

3.16d Further evolution of the principal value of the phase
modulation, normalized by pi. at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.16b.

3.17a Superposition of amplitude modulation at 4 different
times, T a 0. 6.3, 12.6. 18.9. corresponding to the
divergent soliton initial condition.

3.17b Superposition of phase modulation at 4 different times.
T n 0. 6.3. 12.6. 18.9. corresponding to the amplitude
modulation superposition of fig. 3.17a.

3.17c Superposition of amplitude modulation at 4 different
times, T a 22, 24. 26. 30. corresponding to the
divergent soliton initial condition.

3.17d Superposition of phase modulation at 4 different times.
T a 22. 24. 26. 30. corresponding to the amplitude
modulation superposition of fig. 3.17c.

3.18 InviscLd NLS numerical evolution for a wave group of 10
waves, initial steepness ak w .03 (Exp 78). Spatial
frame -9 < X < 9 and time Interval 0 < T < 2.5.



-15-

3.19 Viscous NLS numerical evolution for a wave group of 10
waves, initial steepness ak - .03 (Exp 78). Spatial
frame -9 < X < 9 and time interval 0 < T < 2.5.

3.20 Initial condition at 6.1 m for numerical evolutions in
figs. 3.16 and 3.19.

3.21 Amplitude modulations for the evolution of a group of
10 waves, initial steepness ak a .03 (Exp 78). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (c)
viscous NLS solutions at times corresponding to the
fetches in a.

3.22 Phase modulations for the evolution of a group of 10
waves, initial steepness ak - .03 (Exp 78). (a)
observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

3.23 Inviscid NLS numerical evolution for a wave group of 25
waves, initial steepness ak a .07 (Exp 77). Spatial
frame -21 < X < 21 and time interval 0 < T < 5.

3.24 Viscous NLS numerical evolution for a wave group of 25
waves, initial steepness ak = .07 (Exp 77). Spatial
frame -21 < X < 21 and time interval 0 < T < 5.

3.25 Initial condition at 6.1 m for numerical evolutions in
figs. 3.23 and 3.24.

3.26 Amplitude modulations for the evolution of a group of
25 waves, initial steepness ak a .07 (Exp 77). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions

at times corresponding to the fetches in a. (c)
viscous NLS solutions at times corresponding to the
fetches in a.

II ; ' m -, u ... ..._. . , --,. , -.....
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3.27 Phase modulations for the evolution of a group of 25
waves, initial steepness ak = .07 (Exp 77). (a)

* . observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

3.28 Inviscid NLS numerical evolution for a wave group of 15

waves, initial steepness ak a .10 (Exp 87). Spatial
frame -29.3 < X < 29.3 and time interval 0 < T < 10.

3.29 Viscous NLS numerical evolution for a wave group of 15
waves, initial steepness ak a .10 (Exp 87). Spatial
frame -29.3 < X < 29.3 and time interval 0 ( T < 10.

3.30 Initial condition at 6.1 m for numerical evolutions in
figs. 3.28 and 3.29.

3.31 Amplitude modulations for the evolution of a group of
15 waves, initial steepness ak a .10 (Exp 87). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (c)
viscous KLS solutions at times corresponding to the
fetches in a.

3.32 Phase modulations for the evolution of a group of 15
waves, initial steepness ak a .10 (Exp 87). (a)
observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

3.33 Inviscid NLS numerical evolution for a wave group of 25
waves, initial steepness ak a .10 (Exp 88). Spatial
frame -31.3 < X < 31.3 and time interval 0 < T < 10.

3.34 Viscous NLS numerical evolution for a wave group of 25
waves, initial steepness ak = .10 (Exp 80). Spatial

.'- -2 " " I'.- .
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frame -31.3 < X < 31.3 and time interval 0 ( T < 10.

3.35 Initial condition at 6.1 m for numerical evolutions in
figs. 3.33 and 3.34.

3.36 Amplitude modulations for the evolution of a group of
25 waves. initial steepness ak a .10 (Exp 88). (a)
observations. nondimensionalised at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches In a. (c)
viscous NLS solutions at times corresponding to the
fetches In a.

3.37 Phase modulations for the evolution of a group of 25
waves, Initial steepness ak a .10 (Exp 88). (a)
observations, principal value and norma ized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

3.30 Znviscid NLS numerical evolution for a wave group of 15
waves, initial steepness ak a .15 (Exp 621. Spatial
frame -31.5 < X ( 31.5 and time Interval 0 < T < 40.

3.39 Viscous NLS numerical evolution for a wave group of 15
waves, initial steepness ak a .15 (Exp 62). Spatial
frame -31.5 < X < 31.5 and time interval 0 < T < 40.

3.40 Initial condition at 6.1 m for numerical evolutions In
figs. 3.38 and 3.39.

3.41 Amplitude modulations for the evolution of a group of
15 waves, initial steepness ak u .15 (Exp 62). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (c)
viscous NMLS solutions at times corresponding to the
fetches in a.

3.42 Phase modulations for the evolution of a group of 15
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waves, Initial steepness ak - .15 (Exp 62). (a)
observations, principal value and normalized by pi for
successive fetches. (b) Lnviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

3.43 Inviscid NLS numerical evolution for a wave group of 15
waves, initiaL steepness ak a .16 (Exp 22). Spatial
frame -33.5 < X < 33.5 and time Interval 0 < T < 45.

3.44 Viscous NLS numerical evolution for a wave group of 15
waves, initial steepness ak a .16 (Exp 22). Spatial
frame -33.5 < X < 33.5 and time interval 0 < T < 45.

3.45 Xnitial condition at 6.1 m for numerical evolutions in
figs. 3.43 and 3.44.

3.46 Amplitude modulations for the evolution of a group of
15 waves, initial steepness ak a .16 (Exp 22). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (c)
viscous NLS solutions at times corresponding to the
fetches in a.

3.47 Phase modulations for the evolution of a group of 15
waves, initial steepness ak a .16 (Exp 22). (a)
observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. cc) viscous
NLS solutions at times corresponding to the fetches in
a.

3.4S Inviscid NLS numerical evolution for a wave group of 25
waves, Initial steepness ak a .16 (Exp 23). Spatial
frame -29.1 < X < 29.1 and time Interval 0 < T < 40.

3.49 Viscous MLS numerical evolution for a wave group of 25
waves, initial steepness ak a .16 (Exp 23). Spatial
frame -29.1 < X < 29.1 and time interval 0 < T < 40.
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3.50 Initial condition at 6.1 m for numerical evolutions in
figs. 3.48 and 3.49.

3.51 Amplitude modulations for the evolution of a group of
25 waves, initial steepness ak = .16 (Exp 23). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) invLscid NLS solutions
at times corresponding to the fetches in a. (c)
viscous NLS solutions at times corresponding to the
fetches in a.

3.52 Phase modulations for the evolution of a group of 25
* waves, initial steepness ak a .16 (Exp 23). (a)

observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

4.1 CD shows the steaming track for the acoustic transect,
and B is the location of the buoy from the present
field experiment. Sites of measurements made in
previous studies are also indicated. EF marks an XBT
survey by HBO (19791. T denotes the location of
Halpern's (1971a,b] observations. The solid triangles
show the position of Orr's acoustic observations of the
packet (HBO, 19791. (Map after HBO. 19791.

4.2 2A is a Raytheon acoustic image made while steaming at
approximately 9 knots eastward across the bank as the
ebb tide slackened. The flow is from left to right and
is close to zero. The image shows a largo scale
near-surface low-scattering region coherent with the
depression of the thermocline seen in 2B. The numbers
at the top of the figures indicate stations where XBT
casts were made. Temperatures from expanded scale XBT
traces were hand read and contoured in 2B on the same
scale as the acoustic image of 2A.

4.3 Vertical profile of Brunt-Vaisala frequency and the
first three vertical sigenmodes. The Brunt-Vaisala
frequency was calculated from density inferred from an
average of 6 hand-lowered CTD casts made in the
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vicinity of the mooring. The surface mixed layer
resulted from the passage of a storm. The *igenmodes
were also calculated from inferred density using a
fourth order Runge-Kutta shooting method. The
corresponding first three modal phase speeds were 23
cm/sec, 10.4 cm/sec and 7.1 cm/sec respectively.

4.4 Schematic of the movement of two clear (low-scattering)
regions in the acoustic Images. The near-surface
region is identified in the text as a lee wave. The
bottom clear region may be associated with a pattern of
flow separation. 4A-4D show the set-up and
stationarLty of the ebb tide lee wave. The patch of
clear bottom water is seen to move from the sill crest
to the east of the bank. 4E-4F show the lee wave
shortening and steepeningi the bottom water begins to
move back up the bank. 4G-4H show the set-up of 1-2
lee waves by the flood tide and the propagation of 4-5
of these lee waves as the tide turns. The bottom water
has moved back up and over the sill crest. The arrows
indicate the direction of the flow. The time in hours
and the mean flow are marked in each schematic. These
values correspond to the Froude number time series
listed in Table 1.

4.5 Magnitude of the mean cross-component of current. Also
plotted is the first mode internal wave phase speed (23
cm/sec). When the current speed exceeds the lowest
mode phase speed, the flow is supercritical with
respect to the three lowest modes. This figure brings
together the Froude number calculation of Table I and
the schematic of Figure 4.4. The times of the
individual elements of the schematic are indicated,
thus showing their timing relative to the tidal cycle
and the flow criticality.

4.6 Raytheon acoustic Image corresponding to Figure 4..4A.

4.7 Raytheon acoustic image corresponding to Figure 4.4E.

4.6 Raytheon acoustic image corresponding to Figure 4.4G.

4.9 Raytheon acoustic Image corresponding to Figure 4.4H.
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4.10 Raytheon acoustic image of high frequency internal wave
packet observed while ship was freely drifting 5 km
west of Stellwagen at point C.

........... .................... . ."
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CHAPTER I

INTRODUCTION

1.1 BACKGROUND

Both field and laboratory observations of surface and

internal waves suggest that linear theory can not account for

all of the observed features in the data. For example, the

large amplitudes that are observed violate the small steepness

assumption required for linearization, and the inferred phase

speeds are higher than linear theory predicts.

Nollo-Christensen and Ramamonjiarisoa (19781 review some

studies of surface wind waves (mostly laboratory but some

field observations) and find that linear dispersion does not

adequately describe wind wave propagation. They find that

wind waves propagate at higher phase velocities than the

dispersion relation predicts and that for frequencies

exceeding the frequency of the spectral maximum, the phase

speed is nearly constant. Laboratory (Naxworthy 19791 and

field (Osborne and Burch 19801 observations of internal waves

"- ° ° ' - * . '. " A
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also point towards the existence of large amplitude internal

waves whose propagation is not described by linear dispersion.

Although in recent years much theoretical work has been done

on the stability and interactions of nonlinear waves (Benjamin

and Feir 1967' Whitham 19741 Longuet-Higgins 19781,

observational and experimental studies have lagged behind. In

particular. an application of these theoretical results in

interpreting observations and in the modelling of oceanic

waves is lacking.

Although linear theory can not account for all of the

observed wave properties, admittedly it has worked fairly

well. In addition, it has the distinct advantage that

solutions superpose so that one can hope to describe a random

fielz ;f waves using a Fourier decomposition: interpreting

the field as independently propagating Fourier components.

There is no general way to describe a random field of

nonlinear waves, although Mollo-Christensen and

Ramamonjiarisoa have attempted to do so using wave groups

(1978). Their model was motivated by evidence they saw which

suggested that the surface wave field does not exist solely of

independently propagating Fourier components but at least

partially of wave groups of permanent type. The existence of

internal waves of permanent type has also been documented in

the laboratory (Davis and Acrivos 19671, and evidence of their

occurrence in groups has been obtained in the field (Halpern
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19711 Lee and Beardsley 19741 Gargett 1976).

This thesis addresses the evolution of nonlinear surface

and internal wave groups. It is an attempt to apply some of

the wealth of existing theory on nonlinear waves to

observations, and also to model some of these observations

numerically. The surface wave observations were made in a

laboratory wave channel and modelled numerically using the

cubic-nonlinear Schrodinger equation. The internal wave

observations were made during an oceanic field experiment, and

the results are interpreted in the context of an internal

Korteweg-deVries model.

There are several reasons to examine wave groups. At

least for sea surface waves, evidence points towards a sea

surface composed not just of independently propagating Fourier

components but also of bound higher harmonics. Although

difficult to model, one can argue heuristically that a more

realistic point of view is one that looks at the sea surface

as a collection of groups of nonlinear waves exhibiting

coherence over certain space and time scales. The nonlinear

interactions of individual waves may create groups whose

identities are maintained through a balance of nonlinearity

and dispersion for some distance and time. These wave groups

of quasi-permanent form may then eventually disintegrate due

to instabilities or possibly the effects of external forcing
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and dissipation. This heuristic argument motivates the need

for a further understanding of wave groups. A second

motivation to examine groups is that interactions are easier

to observe in a group than in a continuous wavetrain. The

group is a well-defined entity in both space and times hence,

interactions are isolated. Finally, both of the nonlinear

models which I apply to the observations of surface and

internal waves belong to a class of partial differential

equations which can be solved exactly for arbitrary pulse-like

initial conditions using the inverse scattering transform. A

wave group is a pulse-like initial condition, and although I

will not use inverse scattering per se, properties predicted

by the exact solutions of the above two models based on

inverse scattering theory will be used in describing and

interpreting the results.

Separate treatment will be given to the topics of surface

and internal wave group development. Apart from a related

theme, the studies done for each are actually quite different

both in the measurements that were made and the subsequent

analysis.

1.2 SURFACE WAVES

Surface water waves are among the most widespread and
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easily observable instances of wave motion in nature. They

have been studied for well over one hundred years in a number

of different disciplines (for an overall review see Barnett

and Kenyon 1975# for a review of recent advances in nonlinear

waves see Yuen and Lake 1980). Although the earliest periodic

solution for finite amplitude deep water waves was derived by

Stokes in 1647. It was not until 1925 that Levi-Civita proved

the convergence of Stokes series solution. Oddly enough, the

stability of the Stokes deep water wavetrain was not

questioned for more than one hundred years after its

discovery. LighthL11 119651, using Whitham's theory, shoved

that the Stokes wavetrain is modulationally unstable.

Benjamin and Feir (19671 theoretically confirmed the

modulational instability of weakly nonlinear wavetrains and

made experiments which gave good agreement with the

theoretical prediction for small wave steepness. These

instability analyses were for sideband perturbations to the

initial wavetrain. Longuet-Higgins (19791 did a numerical

study of the stability of a finite amplitude deep water Stokes

wavetrain to linear normal mode perturbations as a function of

steepness. These perturbations were of both shorter and

longer wavelengths than the fundamental (super and sub

harmonics). He also confirmed the modulational instability

for weakly nonlinear wavetrains as well as discovering that

the wavetrain actually restabLILzes at some higher steepness

ak * .346 ( ak * amplitude x wavenumber 3. At still higher
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values of steepness ak .41 1 a new type of subharmonic

instability appearso It has a much higher growth rate than

the modulational instability.

Coincident with work on stability was the discovery that

the complex modulation envelope of periodic gravity waves on

deep water evolves according to the cubic nonlinear

Schrodinger (NLS) equation. The earliest theoretical work

appears to be due to Zakharov E19693 who used a multiple

scales technique to derive the two dimensional cubic NLS

equation. The Schrodinger equation has been in use for quite

some time, in particular in the field of nonlinear optics.

But unlike the Korteweg-deVrLes (KdV! equation, which has long

been known to describe shallow water waves, it is only in the

past two decades that this equation has been associated with

deep water waves.

The cubic NLS and the KdV equations belong to a class of

nonlinear partial differential equations which have soliton

solutions. They can be solved exactly for arbitrary initial

conditions which decay sufficiently rapidly (puLse-like

initial conditions) using the inverse scattering transform

derived by Gardner et al (19671. Thus. although historically

surface waves have been examined from the point of view of

wavetrains. this technique focused attention on wave groups.

Z.E.. the pulse-like envelope of some fundamental carrier wave

6
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gives rise to envelope solitons. Zakharov and Shabat C1972]

solved the one dimensional cubic nonlinear Schrodinger

equation exactly using the inverse scattering transform. The

exact solution predicted some interesting wave properties.

First, they found that an arbitrary initial condition

will disintegrate into a number of solitons and an oscillatory

tail. The velocities and amplitudes of the solitone are

proportional to the real and imaginary parts, respectively, of

the eigenvalues of the related scattering problem. The tail

is relatively small and unimportant. The number and structure

of both the solitons and the tail are determined by the

initial condition. These envelope solitons are stable. They

survive pairwise collisions with no permanent change except

for a possible shift In phase and position. The amplitudes

and velocities remain unaltered. Unlike the soliton solutions

of the KdV equation, the velocity and amplitude of these

solitons are independent of each other. What is principally

new compared to KdV solitons is the possibility of the

formation of a "bound" state of a finite number of solitons

having identical velocities. The eolitons remain superposed

and continue to interact# the modulation is characterized by

a discrete number of frequencies. Energy is transferred

through a discrete number of modes. The simplest case of two

solitons is a periodic-in-time solution characterized by a

single frequency. In the case of the N-soLiton bound state,
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it t an arbitrarily periodic solution characterized by

N(N-1/2 frequencies. If this bound state is physically

realisabLe, it suggests a mechanism whereby a modulated group

of surface waves could exhibit relatively long time and space

coherence.

Yuen and Lake (19751 showed the equivalence of the

* Schrodinger equation and higher order theory of Uhitham.

Their experiments verified the existence of deep water

envelope solitons and gave good comparison with numerical

solutions of the Schrodinger equation. They also made

laboratory and numerical comparisons for the evolution of a

wavetrain (Lake et al 19771. Although a weakly nonlinear

wavetrain is modulationally unstable to a band of wavenumbers,

the existence of a high wavenumber cutoff (in one dimension)

suggests that the energy of the wavetrain may be confined to a

discrete number of modes and hence that in long-time

evolution, thermalixation of wave energy (in the sense of

equipartition among all modes) will not occur. This was borne

out by numerical computations and confirmed by laboratory

experiments. Namely, in the absence of viscous dissipation.

the wavetrain goes through a series of modulation/demodulation

cycles characteristic of nonlinear systems and known as the

rermi-Pasta-ULam (FPU) recurrence phenomenon. BasicaLLy, the

energy does not thermalise but excites a discrete number of

modes, with the possibility of exact recurrence of the initial

IN
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condition. It should be emphasized that FPU recurrence in a

Stokes wavetrain Is equivalent to the N-soliton bound state

for a nonlinear wavepacket. Only In the bound state can FPU

recurrence take place In a wave group because only then do the

solitons remain superposed and continue to Interact. The

bound state together with the quantum properties of the

solution, namely that there exists a discrete number of modes

possible, results in recurrence. The significance of

recurrence is that it indicates a long-tLme "memory" of the

Initial condition. Considering the Intractability of the

general nonlinear problem. it is perhaps encouraging that so

much can be known from the Initial condition. Also

encouraging for the concept of a wavetrain is the implication

that a wavetrain may not be just an artificial Idealized

entity that can not be sustained naturally. It Implies that a

wavetrain maintains its coherence during evolution, similarly

for groups. However. FPV recurrence has not been

experimentally verified for long-time evolution because of

restrictions In wave tank length. rt is predicted from an

inviscid theory, and over long time one expects dissipation to

be Important. Thus experiments are needed to establish

whether recurrence is physically realizable.

Although the practical significance to oceanic waves is

questionable due to the one space dimension restriction, the

one space dimension results may extend to two dimensions more
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than was previously thought. Initial attempts to extend the

analysis to two dimensions involved the two space dimension

cubic NLS equation. This equation has solutions of permanent

type (Hui and Hamilton 19791. Although FPU recurrence still

occurs for a variety of initial conditions, there is no longer

a high wavenumber cutoff, and there is a gradual leak of

energy to higher modes (thermalizatLon) (Yuen and Ferguson

1978). However, a second equation. the Zakharov integral

equation (Zakharov 19681 which recovers the NLS equation in

the appropriate limits, gives promising results and exhibits a

high wavenumber cutoff.

One of the questions that this thesis addresses is the

long-time evolution of nonlinear deep water surface gravity

wavepackets. First, it Is an attempt to describe this

evolution from experiments that were made in an unusually long

wave tank (137.2 m). These observations can be used to answer

several questions. How do the wave groups evolve? Is the

bound state (FPU recurrence, long-time coherence) physically

realizable in the laboratory? On what time scale does

dissipation act? Does dissipation effectively rule out

recurrence? Is the Schrodinger equation an appropriate model

for the long-time evolution (since It is only weakly

nonlinearl? Can a satisfactory Schrodinger equation model

Including dissipation be derived and results compared with

actual observations?

V *
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A theoretical and numerical study by Satsuma and Yajima

(19741 indicated that for a variety of cases the bound state

could be predicted from the phase of the initial condition.

Historically the phase of the waves has not been considered

very important. In linear wave theory. the phase information

obtained from Fourier analysis is ignored. Yuen and Lake's

(19751 wave group experiments only examined the amplitude

modulation obtained by rectifying and low-pass filtering. In

part there has been a lack of motivation to examine phase

since physically its significance is unclear and since there

did not exist any method in fluid mechanics for demodulating

both amplitude and phase. Feir (1967). in one of the earliest

experimental studies done on wave groups. used measured time

between crests to determine the frequency modulation. The

disadvantage of this method is its lack of resolution, it

yields frequency averaged over half a carrier period. This

thesis uses a method introduced by Melville 119811 from

communications theory and used by him to examine the amplitude

and phase modulations of breaking waves. With relatively weak

restrictions, he shows that the measurement of surface

displacement can be used to obtain a time series of both

amplitude and phase modulation at a point. From the phase

modulation the frequency modulation can be calculated and

using a second neighboring space measurement the wavenumber

modulation can be determined.
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There art several aspects of the wave phase that we are

Interested In looking at. First we can describe the phase and

frequency modulations with increasing fetch and compare them

to numerical solutions of the NLS equation which evolve from

the same data. Previous comparisons have only been done for

the amplitude modulation. Secondly we can test the result of

Satsuma and Yajima 119741 that indicates that the occurrence

of the bound state can be predicted (in some cases? from the

phase of the initial condition.

The dispersion relation is a relation that involves the

phase of the waves (a relation between wavenumber, frequency

and amplitude). Melville (19811 has used the Hilbert

transform to confirm the nonlinear dispersion relation to

order 0((OLk) ) for modulated waves. A final question

involving phase and related to dispersion which this thesis

will address In part is the observed frequency downshift.

This is the phenomenon of a nearly uniform wavetrain of

carrier frequency fO modulating and demodulating. eventually

reforming into a nearly uniform wavetrain with slightly Lover

carrier frequency fl. Originally, this was observed In ocean

wind wave spectra (Kinsman 19651 and in laboratory wind waves

(Mollo-Christensen and Ramamonjiarisoa 1982). However, It has

also been well documented in laboratory waves in the absence

of wind (Ramamonjiarisoa (personal communication)# Lake et al

19771. It can not be predicted from a model such as the NLS
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equation which is narrow-banded (valid for slow modulations

about a constant carrier frequency and wavenumber), unless

some new effect such as dissipation. higher order

nonlinearity, or forcing is included. Viscous damping or some

other physical process which causes a secular change in the

phase (and hence the dispersion relation) could account for

the observed downshift. Normally. studies have focused on the

damping of amplitude only. This thesis will explore to some

extent the effect that dissipation may have on phase.

1.3 INTERNAL WAVES

Internal waves of permanent form, although more difficult

to observe and measure than surface waves, have also been

examined theoretically and experimentally in both the

laboratory and the field (Benjamin 19661 Davis and Acrivos

19671 Osborne and Burch 1980). In the field they have mostly

been observed propagating in groups in near-shore regions. In

these regions strong coastal currents, enhanced density

gradients from river outflow and from greater influence of

seasonal heating, as well as large amplitude topography

(relative to water depth) all combine to produce a large

amplitude response to forcing.
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.porn (1971a3 observed groups of large amplitude

waves propagating in Massachusetts Bay that seemed to

rom tidal interaction with a submarine sill. The

ion of these waves was looked at more recently by

Iriscoe and Orr (1979). Halpern's field observations

)d a theoretical (Lee and Beardsley 19741 and a

)ry (Maxworthy 1979] study which offered two different

ions of the generation mechanism of these waves.

% there have been several sets of field observations of

agation of groups of large amplitude internal waves.

i not much documentation of their generation. Despite

i theoretical and laboratory studies on this topic.

ipplication of the results to actual oceanic situations

;ionable since the studies generally employ a simple

Lcation and an idealized topography.

)ther observation of the propagation of similar waves

of Gargett (19761 who observed large amplitude

L wavepackets In the southern Strait of Georgia.

Columbia. These packets are generated by tidal flow

i submarine ridges which lie across the mouths of the

Land passes of the southern strait. Apel et al (19751

io made observations of tidally generated internal

tets over the continental shelf. The most dramatic

.ions are undoubtedly those of Osborne and Burch (19801

i Andaman Sea. The observed amplitudes are as large as
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60 meters, with phase speeds of order 200 cm/sec. Farmer and

Smith (1980a,b) have made the most extensive series of

measurements over a two year period in Knight Inlet, British

Columbia. They have actually observed the wave generation.

They see the formation of nonlinear lee wavetrains resulting

from tidal flow over a sill. Although the physical situation

is quite di$7erent from that in Massachusetts Bay, they have

offered yet another interpretation of Halpern's field

observations in light of their own measurements.

Thus although propagation of these types of waves has

been well documented in numerous studies, several of which are

cited above, there exist few actual observations of

generation. The large amplitude and asymmetry of the

topography are a determining feature of the fluid response,

and there are few theoretical or laboratory studies which

examine these effects. Knowledge of these waves, particularly

in coastal regions, is important for a number of reasons.

Among them are the design of offshore structures which can be

affected by the large amplitudes and phase velocities of the

waves. When wave breaking occurs, significant mixing can take

place which affects nutrient distribution and hence primary

production and marine animal feeding habits. These waves also

introduce a sampling problem for other oceanic measurements.

Mascarenhas (19791 computes from Halpern's data that the

apparent depth of the upper mixed layer can vary by as much as
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30% during a tidal cycle. Maury. Briscoe and Orr (19791 found

strong Inhofogeneities In the vertical and horizontal plankton

distribution caused by wave passale.

This thesis addresses the question of the generation of

large amplitude internal gravity wavepackets. This was done

through a field experiment in Massachusetts Bay designed to

observe the interaction over time of the tide with Stellwagen

Bank. a local topographic feature. The goal of this study was

to determine the mechanism and timing of the generation of the

wavepackets previously observed by Halpern (1971a,b) and by

Haury, Briscoe and Orr (19791. Since internal waves are more

difficult to observe than surface waves, a key tool in this

study was a commercially available Raytheon ship fathometer

which was used as a remote sensor of isopycnal motion. This

remote sensing technique to observe internal wave motion has

been used previously, by Farmer and Smith [1980a.bi and by

Haury, Briscoe and Orr (19791 among others.
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CHAPTER 2

LABORATORY OBSERVATIONS OF SURFACE WAVE GROUP DEVELOPMENT

2.1 INTRODUCTION

In March 1981 experiments were made to investigate the

long-time evolution of nonlinear deep water surface gravity

wave groups. This long-time observation was made possible by

the unusual length of the test facility (137.2 m). The

experiments were made in a wave channel constructed in the

outdoor flood plain in Bay St. Louis. MI (Figs. 2.1. 2.2).

They were carried out in cooperation with Dr. Hing Su of

NORDA.

There have been relatively few experimental studies of

wave group development. The most notable exceptions are the

pulse experiments of Feir (19671, the wave group experiments

of Yuen and Lake (19751 and the wind wave group experiments of

Hollo-Christensen and Ramamonjiarisoa (19821. There are

several reasons to look at the development of groups. Since

most previous studies have been done for continuous



-40-

wavetrains. it is interesting to see if wave groups exhibit

the same characteristic evolution as continuous wavetrains.

Secondly. results for wave groups are probably more relevant

to oceanic waves. Also. interactions are isolated and easier

to observe in wave groups.

The experiments were very simple in nature: constant

amplitude, single frequency wave groups were generated using a

plunger-type wavemaker. This simplicity was motivated in part
U

by previous laboratory experiments (Hollo-Christensen and

Ramamonjiarisoa 19821 In which mechanically generated groups

were Injected into an ambient wind wave field. The frequency

of the mechanically generated groups was chosen to correspond

to the spectral peak of the wind waves. Initially the

distinct groups could be followed, but the evolution quickly

became quite confused and complicated. This study addresses

the dynamics of the isolated, mechanically generated wave

groups. The observations were made outdoors under windless

conditions. Two parameters, the wave steepness ak (ak *

amplitude x wavenumber) and the group length (number of waves)

were varied. The steepness ranged from weak (ak a .031 to

moderate (ak * .16) nonlinearity. Three group lengths were

used' 10, 15 and 25 waves, nominally.

Some qualitative aspects of the wave group evolution as a

function of wave steepness and group length are described.

S . .- .
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The initial group is seen to modulate with fetch. This

modulation gives the impression of a splitting into several

groups. However, these 'split' groups do not diverge from

each other even over very long fetch. The entire modulated

wave packet lengthens and decreases in amplitude.

Qualitatively, increasing the steepness increases the number

of groups in the split-up process. Increasing the group

length delays the splitting process.

In comparison with continuous wavetrains, the frequency

downshift observed in wavetrains (Lake et &l, 19771 seems to

occur also for groups. A weakly nonlinear wavetrain is

modulationally unstable to sideband perturbations. The

wavetrain is observed to modulate with fetch, then demodulate

and reform into a nearly uniform wavetrain but at slightly

lower frequency. For groups of sufficient steepness. wave

packets also exhibit this phenomenon of frequency downshift.

This downshLft was examined using maximum entropy spectra.

This type of spectra assumes an autoregressive model that

gives high resolution for short time series.

A packet's energy Is defined as the integral of the

amplitude squared over the entire packet. The final

observation of packet energy to seen to be typically 25% of

its initial value. This Ld4Lcstee the importance of

dissipation in the long-time evolution.
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The concomitant amplitude, phase and frequency

modulations are obtained using the Hilbert transform. The

method and its assumptions are documented In Appendix 2.A.

The amplitude modulation or group envelope evolution

corresponds basically to the development seen visually. Phase

and frequency modulations are also descrLbed' these are more

difficult to interpret. Previously, most emphasis has been

upon amplitude modulation, although Feir did try to obtain

frequency modulation. However, his method had poor

resolution.

A detailed description of the measurements is given In

the next section. This is followed by an analysis of the data

and a discussion of the results.

2.2 MEASUREMENTS

The measurements were made In the outdoor flood plain in

Bay St. Louis. NI. Figure 2.1 shows an overall view of the

facility. It Is L-shaped with a mown grass bottom. The

dimensions are 1500 meters by 100 meters by I meter. A

movable constriction is situated 340 meters downstream of the

*[ head box. It consists of 30 separate connecting gates, 3.33

motors long, which can be used to produce various flow

6. , ,!' '
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configurations. For the present experiments. the constriction

was completely closed to create a constant depth basin 100

meters by 340 meters. Within this basin a plywood wave

channel was constructed which was 3.66 meters wide and 137.2

meters long. Figure 2.2 shows the location and orientation of

the wave channel inside the basin. The basin was filled to a

depth of .72 meters. The wavemaker was situated at the head

of the channels netting was stretched across the end to keep

larger particulates from contaminating the water surface

within the channel. There was no special treatment of the

water surface, however.

The wavemaker used is a plunger-type with a hyperbolic

forward face (Fig. 2.2). The maximum stroke setting is 30.5

cm and the maximum frequency range is 0.5 hz to 2.0 hz. For

these experiments the stroke setting ranged from 5.1 to 7.6

cm, and the frequency ranged from .80 hz to 1.20 hz. The

crest length of the wavemaker matches the channel width, 3.66

meters. The period of the wavemaker is measured at the drive

shaft.

The wave height sensors were of capacitance type. They

consisted of a single. double-coated, magnetic wire .5 mm in

diameter. The change In capacitance caused by variation In

water depth due to wave passage is converted to a DC voltage

proportional to the surface displacement. The response is

, .,6
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quite LLnoar. Further details on the facility. wavemaker,

wave height sensors and data acquisition system can be found

in Su (19801. He found from calibrations made at the start

and end of each day that very Little drift occurs over an 8

hour period. In the present set of experiments, the sensors

were calibrated only at the start of each day. Wave

reflection in the basin did not appear to be much of a

problem. There is still 150 meters extent between the end of

the wave channel and the end of the basin, and as wLlL be

seen, significant dissipation occurs over the channel Length.

The data acquisition system records up to 20 wavegauge

signals, 20 current meter outputs. 3 components of wind

velocity, the period of the wavemaker. and 2 misceLlaneous

inputs. Wavegauge records are filtered with a 3 db rolloff at

40 hz and digitized with 12-bit accuracy at 40 samples/sec.

They are formatted and stored on 9-track magnetic tape. Four

channels of 12-bLt digital to analog conversion are available

as input to a chart recorder, oscilloscope, oscillograph or

analog spectrum analyzer.

The data acquisition system and other electronic analysis

equipment is housed in a trailer. A power supply of 440 volts

for the wavemaker and 110 volts for other Instruments is

provided by a portable diesel power generator located adjacent

to the trailer. A 21 meter high observation tower on the left
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side of the wave channel provides a plan view of the tank and

a platform for pictures or movies (Fig. 2.2).

For these experiments the measurements from 18 wave

height sensors, the wind velocity, and the wavemaker period

were recorded. The experiments were made under still wind

conditions. For a given stroke and frequency setting (hence

wave steepness), groups of 10. 15 and 25 waves were generated.

Each wave group was allowed to propagate down the channel

before generating the next group. The wavegauges were placed

along the centerline of the channel, and measurements were

made at the following fetches (distance is in meters): 6.1,

15.2. 30.5. 45.7, 61.1, 76.2. 91.4. 106.7. 121.9, 137.2. Most

locations had wavegauge pairs separated by .30 m (roughly one

quarter wavelength). The locations of the wavegauge pairs

were; 6.1. 30.5, 61.1, 91.4. 106.7. 121.9. and 137.2 meters.

In addition, a third wavegauge at 121.9 m was placed near the

sidewall. The pairs were used to determine the wavenumber.

Access to the sensors was provided by planks which ran from

the bank of the basin over the top of the channel walls.

Although it was attempted to generate wave groups of a single

frequency and constant amplitude, small transients were

present from starting and stopping the wavemaker.



-48-

2.3 ANALYSIS AND RESULTS

2.3.1 Description of evolution

The wave group evolution was observed as a function of

two parameters: wave steepness and group length. Table 2.1

summarizes the experimental parameters for those experiments

chosen for discussion. They represent a range of steepness

from weak to moderate nonlinearity. For each steepness, three

different group lengths were used. The number of waves per

group represents a nominal estimate.

The initial frequency, fO. was determined by three

different methods which gave very good agreement. The initial

frequency was determined first from a measurement at the drive

shaft of the wave generator. Secondly, it was calculated from

the wave period using the measured time lag between successive

wave peaks and troughs at the most upstream wavegauge (6.1 m).

Finally, the frequency was also determined as the frequency of

* the spectral peak for the maximum entropy spectrum of the most

upstream wavegauge. The criterion for a wave peak or trough

was defined as 40% of the maximum wave amplitude. The average

amplitude was calculated from the calibrated wave height

measurement as one half the average wave height. The average

wave height, in turn, was calculated as the average difference

between the peak and trough amplitudes. The number of waves
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Table 2.1

Experimental Parameters

Experiment N ak f k f df/f
w 0 1 0

(hz) (rad/cm) (hz)

78 10 .03 0.80 0.025 0.80 .00

79 15 .03 0.80 0.025 0.80 .00

80 25 .03 0.80 0.025 0.80 .00

75 10 .07 0.97 0.036 0.97 .00

76 15 .07 0.96 0.036 0.96 .00

77 25 .07 0.96 0.036 0.96 .00

86 10 .10 0.96 0.037 0.95 .01

87 15 .10 0.96 0.037 0.95 .01

88 25 .10 0.96 0.037 0.94 .02

61 10 .15 1.20 0.06 1.06 .12

62 15 .15 1.20 0.06 1.04 .13

63 25 .15 1.21 0.06 1.04 .14

21 10 .16 1.21 0.05 1.05 .13

a2 15 .16 1.21 0.05 1.02 .17

23 25 .16 1.21 0.05 1.0. .16
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-oup that met the peak/trough criterion is tabulated

2.2. Wavenumber was calculated from the measured

; between the most upstream wavegauge pair (6.1 m)

-e separated by .3 m. The final frequency, fl, at the

%stream observation (137.2) was determined from the

of the spectral peak. The method using the time lag

uccessive peaks and troughs lacked resolution at this

km location due to the difficulty of defining a

)ugh criterion. Typically at this distance, the waves

)ngly attenuated.

Ares 2.3 to 2.11 show the wave group evolution with

(fetch increases upwards). in order of increasing

ipness. In each case the most upstream location. 6.1

intered and plotted. The arrival time of the group

Lf it propagated at half the phase speed (based on

fO and k), was calculated for each wavegauge

The remaining plots are centered on this

ited arrival time of the group center, based on linear

Locity. (This estimate is not actually the linear

Locity since separate estimates of frequency and

ir are made instead of using the dispersion relation

them. The estimate used is w/2k). As can be seen.

a9 propagate faster than group veloc,,y predicts. The

and largest steepnesses are seen to deviate the most.

is* of the smallest wave steepness (Fig. 2.3). this
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Table 2.2

Soliton Estimation

Experiment N ak N N
PKS S,T S.0

78 10 .03 0.4 ,N.0

79 14 .03 0.6 0.0

80 23 .03 0.9 0.0

75 10 .07 0.98 1.0

76 14 .07 1.4 1.0

77 24 .07 2.3 1.0

86 5 .10 0.7 1.0

87 13 .10 1.8 1.0

8e 26 .10 2.3 2.0

61 7 .15 1.4 1.0

62 i4 .15 2.9 4.0

63 23 .15 4.9 5.0

21 7 .16 1.6 1.0

22 14 .16 3.2 3.0

23 23 .16 5.2 4.0
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is probably due to linear frequency dispersion (low frequency

components running ahead of the group carrier) and due to the

speed estimate being smaller than one based on frequency

alone. (The linear group velocity for the smallest steepness

experiment based on frequency alone is 97.5 cm/s and the

estimate based on half the phase velocity using measured

frequency and wavenumber is 89.4 cmlsecl. In the case of the

steepest wave groups (Figs. 2.8 to 2.11). this is probably

due in part to frequency dispersion. but also due to nonlinear

effects which in addition to increasing the group speed are

observed to give rise to frequency downshifting of the carrier

frequency. The phenomenon of frequency downshifting will be

discussed in the next section. The middle steepnesses (Figs.

2.4 to 2.7) show propagation somewhat faster than linear group

velocity predicts (6% faster for E88, Fig. 2.7). This is

probably due to both frequency dispersion of lower frequency

components and nonlinearity. Very little downshifting is

evident for small Initial wave steepnesses (Table 2.1). In

this weakly nonlinear range (ak - .07,.10) we find the best

balance between nonlinearity and dispersion.

Table 2.2 tabulates the number of peaks that met the

crest criterion for the chosen experiments. It also compares

the predicted and observed estimates of the number of

solitons. The theoretical model will be formally derived in

the next chapter. but for purposes of discussion we briefly
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summarize the model and some pertinent properties of its exact

solutions. In particular. we show how the theortical estimate

for the number of predicted solitons can be made.

Zakharov [19681 was the first to derive the two space

dimension cubic NLS equation. This equation governs the

evolution of the slowly varying complex modulation envelope of

deep water surface gravity waves. The equation in one space

dimension is

2
I [ A + (w /2k ) A I - (w /8k A A

t 0 0 x 0 0 xx

2
- (w k /2) A A A - 0 (2.1)

0 0

where A(x,t) is the complex modulation envelope

A(xt) a R(xt)exp~i p(x.t)) (2.2)

and A(x,t) is related to the free surface n(x,t) as follows:

n(x,t) a Re( A(x.tlexp(i (k x - w til 42.31
0 0

w and k are the carrier frequency and wavenumber.
0 0

x is horizontal distance and t is time. The appropriate

time and length scales for nondimensionalization are'

2
T - (ak) w t I X * (ak I k Cx- ( w /2k I t) (2.4)

0 0 0 0 0 0

where ak Is wave steepness and X is a frame of reference
0

that moves at the linear group velocity.

In addition, if we nondimensionalize the envelope by the
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maximum wave amplitude, we arrive at the dimensionless form:

0

i A - (1/8) A - (1/2) A A A - 0 (2.5)
T XX

For initial conditions that decay sufficiently rapidly as

IX1-2eO i.e. pulse envelopes, Eq. 2.5 was solved exactly by

Zakharov and Shabat (19721 using the inverse scattering

transform developed by Gardner et al (L967). Particular

solutions to 2.5 take the form:

.5 2 2
A(XT) * a sech( 2 a (X - UT))exp(-La T/4 - 41UX + 21U T)

(2.6)

These are progressive envelope pulses whose height and width

are inversely proportional to each other but are independent

of the speed of propagation U relative to the group velocity

(unlike KdV solitons).

Properties of the exact solution are summarized by

Zakharov and Shabat 19721 and by Yuen and Lake (1975). For

our purposes we note the following:

4

(a) An arbitrarily shaped one-dimensional envelope pulse

will eventually disintegrate into a definite number of

permanent progressive sech solitons of the form given by

equation 2.6 and a linearly dispersive tail. The number and

structure of the solitons and the structure of the tail are
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completely determined by the initial condition.

(b) The linearly dispersive tail is small and relatively

*J1 unimportant. The linear dispersion gives a ii 7 amplitude

decay in the tail.

(c) The time scale of formation of these solitons (or

transition time from initial to asymptotic state) is directly

proportional to the pulse length and inversely proportional to

the pulse amplitude.

"'°W (d) For a real initial profile, the number of solitons in

the asymptotic state can be estimated by the formula:

N - £ 'a (icl, (2.7)

S.T 42-0

where A(XO) m f(x) 9 0 < f(x) < 1

In section 2.3.4 we will see that there is very little phase

variation In the Initial pulse. Therefore, If we estimate the

pulse as a top hat profile of length L we arrive at the

following formula for estimating the expected number of

solitons:

662
N J, a .3. (2.8)
ST PKS

where N is the number of peaks (Table 2.2).
PKS

Ne now proceed to describe the qualitative features of the

evolution seen in Figures 2.3 to 2.11.

i°
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Figure 2.3 (Exp 781 shows the evolution of a group of 10

waves of small steepness (ak *.031. There Is an initial

modulation of the group. In addition. we observe some Lower

* frequency waves moving to the front of the group and some

* higher frequency waves trailing the group. This is typical of

all the experiments and Indicates linear dispersion. However.

for groups of higher initial steepness this Linear dispersion

is of much lower amplitude than the group and separates from

it as the waves propagate. For this case of relatively Low

amplitude the entire group seems dominated by frequency

dispersion. Basically. the group spreads and attenuates as it

propagates. No permanent-type solitons form nor are any

* predicted from the initial condition (Table 2.2).

Figure 2.4 (Exp 77) shows the evolution of a slightly

steeper group (ak a .07) of 25 waves. The modulation starts

from both ends of the group. This is typical of all the

experiments, particularly for Longer group Lengths. and is

* probably due to the starting and stopping transients and the

* Large number of frequencies present at the ends of the group.

* The modulation proceeds from four groups at 30.5 meters to

* three groups at 45.7 meters to two groups at 76.2 meters to

* one slightly modulated group at 137.2 meters. The amplitude

has decayed over the distance propagated, and leading small

amplitude low frequency waves and trailing small amplitude

high frequency waves are observed. The predicted number of

4

* *'.
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soLitons is one. and the observations indicate that this is

possible, but the evolution appears to be incomplete at 137.2

meters. This is anticipated from predictions of the exact

solution of the cubic NLS equation which states that the

formation time scale of the solitons (or transition time from

initial to asymptotic state) is in direct proportion to the

length of the pulse and inversely proportional to the

steepness. Hence, for long weakly nonlinear groups we expect

the longest evolution time scale.

The next three figures (figs 2.5 to 2.7) show the

evolution for three different group lengths with wave

steepness ak - .10 (Exp 86. 87. 881. In figure 2.5 we see the

initial pulse modulate and eventually form into a single

envelope soliton at 45.7 meters. There is an initial group of

small amplitude low frequency waves and a trailing group of

higher frequency waves that disperse away from the central

envelope as It propagates. The soliton remains fairly steady

from 61.1 meters until 137.2 meters although there is some

spreading within the group and a decay in amplitude. Due to

dissipation, we cannot observe a wave group of permanent form.

Rather, we seem to observe a wave group of quasi-permanent

form. It appears to adjust in a shorter time than It

dissipates, but due to energy loss it can not evolve into the

steady asymptotic state that is predicted. This will be

further discussed in section 2.3.3
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A similar evolution is noted for Exp 87. figure 2.6. A

modulation is seen to start at either end of the group. The

formation of a single envelope soliton occurs at further

fetch. 91.4 meters, than in the previous figure for evolution

of a shorter pulse. Again, dispersive low frequency leading

and high frequency trailing waves are seen.

Figure 2.7 shows the development of a still longer group

(nominally 25, but actually about 30 waves) of the same

steepness (.10) as in the previous two figures. It appears to

form a pair of solitons, but the time scale of formation is

longer than for the previous two group lengths. A pair is

seen to form at 121.9 meters. but the group demodulates

slightly at still further distance, and the evolution is

incomplete.

Figure 2.8 shows the evolution of a group of 15 waves for

one of the steeper experiments (ak u .15). For these steeper

experiments, frequency downshifting was seen to occur. This

wil be discussed more fully in the next section. However, we

here note that the strongest modulation occurs while the

sideband perturbations to the carrier wave are growing. Once

the downshifting of the carrier occurs, at 61.1 meters in

figure 2.6, the modulation is weaker and the initial pulse

appears to 'sort out, into a succession of envelope solitons.

In figure 2.6. at 137.2 meters. we see four of these groups
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with the leading groups of slightly lower frequency and larger

amplitude.

Figures 2.9 to 2.11 show the evolut-on for three

different group lengths for the steepest experiments (ak -

.16). The number of predicted and observed solitons agree

fairly well (Table 2.21. The 'sorting out' process again

occurs when the frequency downshifting of the carrier is

achieved. This 'sorting out' seems to take Longer for a

longer initial pulse. For the longest initial pulse. figure

2.11, the evolution appears to be still incomplete at 137.2

meters.

2.3.2 Downshifting

The phenomenon of frequency downshifting which has been

observed in nonlinear continuous wavetrains was also observed

to occur in wave groups of sufficient steepness. The

downshift was examined using a maximum entropy spectral

estimator. Use of traditional methods of power spectral

density estimation to examine the spectral evolution of wave

groups is limited by the length of the data records.

Frequency resolution, the ability to distinguish distinct

peaks that ar* relatively close together in the frequency

domain, and a smeared spectral estimate, the result of

vindowing, are particularly troublesome for short time series.
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We use the maximum entropy method (MEN) to look at the

spectral evolution of the wave groups. This adopts a

modelling approach to spectral estimation. The improved

resolution and spectral fidelity result from making more

realistic assumptions concerning the nature of the measured

process outside of the measurement interval other than

assuming it is zero or cyclic. The improvement is especially

noticeable for short time series. From this modelling

viewpoint, the traditional discrete periodogram estimate is

equivalent to a least squares fit of the data to a harmonic

(discrete Fourier series) model. The maximum entropy model

assumes that the data is autoregressive. The method is

outlined in Appendix 2.A.

Figures 2.12 to 2.18 show the spectral evolution for some

of the experiments. The first step in data processing was to

determine the carrier frequency fO and then to band pass

filter around this initial carrier frequency. The band pass

was one hertz in width, centered on the carrier. The spectra

were done on the same one hertz frequency interval using 80

poles (80 autocorrelation lags). Figs. 2.15 and 2.18 are

exceptions. The reason behind this choice of narrow frequency

band was to achieve very good resolution of peaks close to the

carrier frequency. In those experiments where downshifting

occurred, the width of the interval always included the

downshifted frequency. This was checked by comparison with
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spectra of unfiltered data from the final wavegauge

observation in the channel. Notice that the horizontal axis

is much expandeds these are narrow-banded spectra. For

comparison, two spectral evolutions for unfiltered data on the

interval (O.1 hz - 3.0 hzI using 100 poles are shown (Figs.

2.15 and 2.18).

The frequency downshifting observed in wave groups seems

to result from a modulational instability. Initially, for1

groups of sufficient wave steepness. sidebands are seen to

grow. After a time the lower sideband grows at a faster rate

than the upper sideband. The modulation is strongest when the

lower sideband is smaller than the fundamental. Eventually.

the lower sideband exceeds the fundamental peak. At this

point the modulation appears to have 'sorted out' into a

succession of quasi-permanent solitons with the larger

amplitude, lower frequency groups leading. The downshifting

process seems irreversible. Table 2.1 tabulates the frequency

fl of the spectral peak from the final observation at 137.2

meters. The percentage downshift, df/fO. from the fundamental

is also calculated. No downshifting is seen to occur for the

experiments with lowest steepnesses (ak - .03 and .07). A

small amount of downshifting. about I %. occurs for groups of

steepness ak * .10. The biggest percentage downshift, on the

order of 15 ', is seen to occur for the steepest experiments

(ak a .15..16). The longer groups tend to have slightly



larger downshifts.

Figure 2.12 shows the spectral evolution of a group of 10

waves of initial wave steepness ak a .03 (Exp 781. The time

development of this group is shown in fig. 2.3. Initially at

6.1 meters we see that the spectrum is narrow-banded with a

peak located at 0.80 hz. As the group evolves, the location

of the spectral peak remains fixed, although the spectrum is

seen to become more broad-banded. Recall that this wave group

experiment showed the strongest linear dispersion. We see the

effects of the filter rolloff at the band edges (.3 and 1.3

hz). In two later figures (2.15 and 2.18) we will show

spectra of unfiltered data done on other experiments which

eliminates the filter effect at the edges at the expense of

resolving the sideband peaks. Finally, we note that for this

short group of small initial steepness no sidebands were seen

to grow, and no frequency downshifting occurred.

Figure 2.13 shows the evolution of a group of 25 waves

with steepness ak n .07 (Exp 77) corresponding to the time

evolution shown in fig. 2.4. The Initial peak remains fixed

and no sidebands are seen to grow. At 30.5 meters we see a

suggestion of sideband presence. but the amplitudes are more

than 40 db down from the fundamental and do not develop with

distance. Again we see the effects of the filter rolloff at

the band edges. this time at .5 and 1.5 hz. and the spectrum
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is seen to broaden somewhat with evolution.

Figure 2.14 shows the evolution of a group of 25 waves of

initial wave steepness ak * .10 (Exp 88). A small amount of

downshifting (2 %) was seen to occur for this experiment.

Fig. 2.7 shows the time evolution. The initial peak was

located at 0.96 hz. Fig. 2.L5 shows the spectrum of the same

group for the unfiltered time series on a larger frequency

interval. Note the sharp fundamental and first harmonic

characteristic of Stokes wavetrains. At 15.2 meters we see

from fig. 2.14 the growth of lower and upper sidebands. The

effect of the filter rolloff is visible at the band edges,

fig. 2.15 eliminates this filter effect but does not resolve

the sidebands. At 45.7 meters the lower sideband seems to

have grown larger than the upper and to be partly absorbed

into the fundament.al. The sidebands are no longer

distinguishable at further fetches. At the final observation

the location of the peak frequency is seen to be slightly

downshifted (Table 2.1).

Figure 2.16 shows the evolution of a group of 15 waves of

initial steepness ak a .15 (Exp 62). The initial peak is

located at 1.2 hz. At 45.7 meters the lower sideband has

already exceeded the fundamental, and the modulation here is

the strongest (fig. 2.8). At 61.1 meters the downshifting of

the carrier is achieved, and the initial pulse appears to have

I
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Ltself out into a succession of quasi-steady envelope

The spectrum is seen to broaden appreciably from its

state. The pulses are not all of the same frequency.

ling pulse is of slightly lower frequency (the

!ted frequency) than the trailing pulse which is close

Lnitial carrier frequency. Some linear dispersion is

Ldent.

;s. 2.17 and 2.18 show the spectral evolution of a

! 25 waves with initial wave steepness ak - .16 (Exp

ie initial peak is located at 1.2 hz. Fig. 2.18 is

:trum of the unfiltered time series and shows the

iarmonic. At 30.5 meters we see the presence of

Is; the lower sideband has exceeded the upper. The

)f the filter rolloff is also evident. Fig. 2.18

tes the filter effect but resolves the sidebands

At 61.1 meters the lower sideband is equal to the

ital. Fig. 2.11 shows that the modulation is

it at 45.7 and 61.1 meters. It takes longer than in

eious spectral evolution for the downshifting to occur.

meters the initial pulse seems again to have sorted

)ut into a train of envelope solitons of increasing

:y. Again the spectra are seen to broaden as the group

Both downshifting (15 %) and linear dispersion are
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2.3.3 Dissipation of wave energy

A significant amount of wave damping was observed for the

wave group evolution in the channel. To estimate the total

amount of dissipation, a wave packet energy was defined as

follows:

00

E(V.~ t) Qc(y t (2.9)

where a(xt) is the wave amplitude. For a wave packet

observed at a fixed position x . we have that a(x .) = 0.

A modulus of decay (assumed constant) can be estimated

using the energy equation:

at + 3_ G, o? (2.10)

where C , is the linear group velocity, and T is the modulus

of decay. For fixed position x. we integrate equation 2.10 in

time to find:

2) Y.LPCL (2.11)

If we now integrate in x from our initial observation at xO we

find:

.. £ E., / Eo c., .-- ' -(2.12)

where E. is the initial packet energy and m is the damping

coefficient which is related to the modulus of decay using the

linear group velocity.
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Figures 2.19 to 2.23 show the logarithm of the packet

energy normalized by its initial value (at 6.1 m) plotted

versus distance along the channel. Also shown is the least

squares line fit to the data points. The slope of this line

was used to determine the energy damping coefficient m. The

wave amplitude damping coefficient . . was taken to be half

this value since energy is proportional to amplitude squared,

i.e.,

if . -')1(2.13)

then C&.A.g OL CAP a 4 -x .)) =o (2.14)

The value of this amplitude damping coefficient. ( , is

tabulated in Table 2.3.

There are three primary sources of dissipation for

laboratory surface waves: viscous damping at the bottom and

sidewall (solid) boundaries, viscous dissipation at the

surface from a contaminating surface film. and capillary

hysteresis associated with tne meniscus at the contact line

between the free surface and the channel wall.

Hunt £19521 examined the damping at the bottom and

sidewall boundaries by invoking viscous boundary layers with

an interior inviscid potential flow. Van Dorn (19661 examined

the damping due to an additional surface boundary layer which

I
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RK = .07 NW = 25 (EXP 77)
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value plotted versus fetch for a wave group of 25 waves. ak
.07 (Exp 77). Least squares Line fit to data is also shown.
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K= .10 NW = 25 (EXP 88)
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.10 (Exp 88). Least squares line fit to data i also shown.
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considered the surface to be horizontally immobilized by a

contaminating film. This state Is characterized by the total

annulment of the horizontal component of orbital velocity at

the surface with the vertical component unaffected by the

film. Extensions and contractions of the surface film act to

create variations in surface tension which in turn dissipate

the waves. From experiments Van Dorn found that dissipation

from the surface layer may often be larger than that due to

solid boundaries. Furthermore, he noted that the surface

tension effect (contamination) is almost always present unless

the surface is specially treated. He found that the effect

increased with time after the initial filling of the wave tank

until a fully contaminated state was arrived at (about one

hour). However, there was no visible manifestation of surface

contamination. The appearance of the water surface was the

same as when it was freshly filled.

Miles (19671 reviews the damping of surface waves in

bounded basins. He reproduces and extends the above boundary

layer results and analyzes the damping due to capillary

hysteresis. From comparison with observed decay rates, which

typically exceed predicted rates based on wall damping alone

by factors of betwen 2 and 3. he concludes that both surface

films and capillary hysteresis are important and can account

for the observed discrepancies.

!
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(19661.

Capillary hysteresis may well have been an important

source of damping, but it can not be estimated from the data.

Another source of dissipation in our experiments that 2.15

-i does not account for was gentle wave breaking (no air

entrainment) that was sometimes observed visually for the

- steeper experiments. From the sources of dissipation that we

can estimate using 2.15, damping from surface contamination

was by far the most important contribution followed by

sidewall and bottom boundary dissipation, in order of

importance. The expression 2.15 assumes a smooth bottom

boundary. The channel used had a mown grass bottom which

should significantly increase the dissipation. The

theoretical predicted values of the decay rate are somewhat

less than the values calculated from the observations for the

lowes three wave steepnesses (Table 2.3). They are somewhat

larger than those for the experiments with the two highest

steepnesses. In all cases, the largest discrepancy between

the two values was less than an order of magnitude.

Also shown in Table 2.3 are three time scales: the wave

period, the modulational time scale, and the viscous time

VL scale. The modulationml time scale is given by 2.4 to be:

(2.16)

where T is the wave period. The viscous time scale is defined

. . ' ** .
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Segur [19811. in estimating the viscous decay of envelope

solitons using the energy equation 2.10. finds that envelope

solitons can be expected to decay at twice the rate of a

uniform wavetrain provided that the viscous decay time is much

longer then a wave period and much faster than the

modulational time scale. This implies that the soliton

formation time is fast enough that the soliton can continually

readjust to maintain the proper shape as its energy is

dissipated.

To theoretically estimate the amount of dissipation that

we can expect in our experiments we used the following

relation taken from Segur (1981). ( is the theoretical

estimate of Q ).

k (lftt-i k ~ k 4. 4" (. a k)Itt.Y (2. 15)

I4 AALl LO,.o)

S represents a viscous boundary layer thickness. 'La

are the inviscid wavenumber and frequency, respectively.

is the kinematic viscosity ( a .01 cm /sect. h is the

mean depth in the channel (h = 72 cm). and b is the channel

width (b * 366 cm).

If K a 0. only dissipation at solid boundaries is

considered, and we recover the result of Hunt (19521. If K -

1. dissipation at a horizontally immobile surface is also

included, and we recover the corrected result of Van Dorn

I
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Table 2.3

Frictional Parameters

Experiment o T M v
(/cm) (/cm) (sec) (sec) (sec)

78 .00006 .00002 1.25 1389 510

79 .00007

80 .00008

75 .00006 .00004 1.04 212 313

76 .00006

77 .00005

86 .00007 .00005 1.04 104 250

87 .00007

88 .00006

61 .00004 .00010 0.83 37 156

62 .00004

63 .00005

21 .00004 .00007 0.83 32 223

22 .00006

23 .00004
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a see that for the three steepest sets of experiments

scous time scale is much greater than the modulational

:ale. Hence. we expect that the solitons can

.ally readjust and are thus best described as waves of

permanent form. For the lowest steepness (Exp 78 - 80),

Icosity acts on shorter time scales than the

lional instability and the result is decay from the

I pulse. Exp 75 - 77 show comparable viscous and

Lionel time scales, with the viscous scale longer than

Julational time scale.

ame further ideas on the relation of viscosity and the

inon of frequency downshifting will be elaborated on in

scussion.

Modulations

m assume the following model for our wavegauge

itions:

:) z Re ( a(x,.t) exp( i (0,t + e(xi,t) 3 3 ) , (2.18)

;(xL,t) is the measurement of surface displacement at
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fixed location xiand ois the initial carrier frequency. This

models the surface displacement signal as the product of a

rapidly varying carrier wave

exp( i (Wat) 1 (2.19)

and a slowly varying complex envelope

a(xstlexp( i .(x4,t) 1 (2.201

The amplitude modulation a(x,.t) and the phase modulation

e(x,,t) are obtained using the Hilbert transform of the

signal. The frequency modulation is defined as

f(x.,tI U + e(x4,t) (2.21)

The method and its assumptions are documented in Appendix 2.A.

Figures 2.24 to 2.41 show the amplitude, phase and

frequency modulations at 6 different wavegauge locations for 3

different experiments with varying group length and wave

steepness. Figures 2.24 to 2.29 show the modulations for a

group of 10 waves with wave steepness ak a .03 (Exp 79).

Figures 2.30 to 2.35 show the modulations for a group of 15

waves with steepness ak - .LO (Exp 87). Figures 2.36 to 2.41

show the modulations for a group of 25 waves with steepness ak

" .16 (Exp 23).

The amplitude modulation 1 superimposed on the filtered

wave group. Notice the excellent fit. The phase modulation

is defined with the carrier trend removed and has been

• .- - - - - - --- - - . -, . . ° . . .-- -. .- -. ,- . - ° - . . .. - . .- , °
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unwrapped (see Appendix 2.A). There is very little phase

variation within the group. Most of the phase variation

*i occurs outside the group where the amplitude is nearly zero.

The frequency modulation is defined as the time derivative of

the phase with the carrier added back in. Discontinuities (or

*jumps) in the frequency modulation occur where there are local

reversals in phase. Again, there is little variation in the

frequency of the initial groupo a small amount develops with

fetch. Most of the jumps in frequency (hence reversals in

phase) occur outside the wave group where there are local

amplitude minima (Figs 2.26, 2.33). Where jumps do occur

within the wave groups, they tend to occur where there is a

minimum in amplitude modulation (Figs 2.39-2.41).

This technique for demodulating the surface displacement

signal was introduced from communications theory by

W. K. Melville (19811. He used it to examine the evolution to

breaking of nonlinear surface gravity wavetrains. He computes

an instantaneous phase speed, the ratio of frequency to

wavenumber modulation (wavenumber is obtained with a second

space measurement), and finds small regions of very rapid,

large amplitude variations in phase speed corresponding to the

phase reversals. The large gradients (jumps) that he observes

in the frequency, wavenumber and phase speed always occurred

in the breaking region and in the neighborhood of local minima

in wave amplitude.

;.1
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Our purpose in obtaining the modulations from the

observations at 6.1 meters was to specify both amplitude and

"* phase modulation as an initial condition to the

cubic-nonlinear Schrodinger equation (Chapter 3). The

modulations from the other observations along the wave channel

were computed for comparison with those from the numerical

evolution.

2.4 DISCUSSION AND SUMMARY

In the long-time evolution ue see the initial group

lengthen, attenuate, modulate and, for groups of sufficient

*. length and steepness, form a succession of envelope solitons.

The two most important aspects of the long-time evolution are

the cumulative effect of dissipation and the phenomenon of

frequency downshifting. The observations show that for wave

groups of sufficient steepness (ak > .10 ). the downshifting

that is seen in continuous wavetrains also occurs in wave

groups. However, although the peak frequency of the entire

modulated group is downshifted, not all the solitons or

envelope modulations that develop from the initial group have

downshifted. There is a sorting out into a succession of

groups with the leading groups having the downshifted

frequency.

Also for groups of steepness ak ) .10. the viscous time

-., -. . .

. .. .. . . - •. . .. . . .



-- .- Y .-- -- - . --- - ' -.-- '-- .-

-114-

scale is seen to be much greater than the modulational time

scale, indicating that the solitons or envelope modulations

that develop from the initial pulse have time to adjust before

they are dissipated.. This suggests that groups which evolve

to their final or 'asymptotic' state without being dissipated

might be expected to form groups of quasi-permanent form.

These groups would appear steady over the viscous time scale.

However, it is likely that this energy loss prevents the

groups from evolving to their asymptotic predicted state. We

can think of this loss as changing the quantum state of the

pulse. Both the damping and the frequency downshift are seen

* to be irreversible processes.

These effects cannot be modelled by a frictionless

unforced cubic NLS equation. but by specifying the

observations as an initial condition and comparing the

wavetank and numerical evolution, we can test the time scale

of validity of the cubic NLS model. We can also try to

incorporate the effects of dissipation and downshLfting into

the model.

We have used the Hilbert transform to demodulate the

amplitude and phase of the waves. Previous studies have

ignored the phase modulation and determined the amplitude

modulation by rectification and low pass filtering. The

rectification process introduces sideband.. Lose of energy to

K =
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the sidebands and choice of a cutoff frequency can result in a

significant loss of modulation energy (Sahar 19811. There is

no study. to our knowledge, that determines phase modulation

from observations as an initial condition to the cubic NLS

equation. This was primarily due to lack of a method for

determining the continuous time series of phase. Theoretical

predictions of the exact solution of the cubic NLS equation

based on the phase of the initial condition (Satsuma and

Yajima 19741 suggested that the determination of the phase

modulation was important for the evolution. In particular, it

is important for predicting the occurrence of the bound state.

- There is almost no variation in the initial phase or frequency

modulation, although small variation is seen to develop with

fetch as well as small regions of quite large variation.

Small regions of phase reversal result in discontinuities

or jumps In the frequency. Melville (19811 suggests these

jumps may be the mechanism of 'crest pairing' (one crest

overtakes another and disappears) observed by Ramamonjiarisoa

and MoLlo-Christensen E19791. Crest pairing may be the visual

manifestation of the frequency downshift. The jumps in

- frequency correspond to similar large variations in wavenumber

and phase speed. Local large phase speed variations in the

vicinity of amplitude minima may act to merge crests or

troughs (local instability) and to decrease the frequency.

.
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A satisfactory explanation of the frequency downshift has

not been obtained. Nor has the effect that dissipation may

have on wave phase been examined. We proposed that the

surface damping effect (which introduces variations in surface

tension) might act to change the phase of the waves, thus

resulting in local phase reversals and frequency downshifting.

It will be shown in the next chapter that for the linear

dissipative balances that were attempted, no effect on phase

which could account for anything other than amplitude

attenuation could be arrived at. It seems likely that if

dissipation affects phase, it is through a nonlinear coupling.

This is supported in part from observations, only the steeper

experiments exhibit downshifting.

• S
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Appendix 2.A Data Processing Methods

The data processing was done on a Digital Equipment

Corporation PDP-11/60 computer. Most of the software was

generously provided by G. Sahar. Figure 2.Al is a block

diagram of the processing sequence.

2.A.1 Filtering

The filter is a finite impulse response linear phase

digital filter, designed by a special program written by

J. H. McClellan and documented in McClellan et al. (1973).

The design algorithm uses the Remez exchange method to design

a filt.r with minimum weighted Chebyshev error in

approximating a desired ideal frequency response.

The impulse response vas made causal by shifting to the

right in the time domain. This translates into a linear phase

in the frequency domain. This linear phase in the output of

the filter is eliminated by shifting it to the left. The

filtering program uses an overlap-add algorithm (Oppenheim and

Schafer 1975).

2.A.2 Spectral estimation

The spectral estimator is of the nonlinear adaptive kind,
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Determine experimental
parameters (Table 2.1)

(Initial carrier frequency fo)

~Bandpass filter

(to-.5,fo+.5] hz

Plot

(Follow the group at
linear group velocity)

ocorrelation to Hilbert transform to
lags get ampititude and

phase modulations
(carrier removed) 2irfo

imum entropy Determine frequency
:tral estimate modulation as the time

derivative of phase
modulation plus the
carrier frequency 27rfo

Fig. 2.A1 Sequence of processing
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using the maximum entropy (MEMI or autoregressive (AR) method.

A brief outline of the method is given bt'ow. The computer

code was written by Dr. B. Campbell, Dr. B. Dunwoody. and

M. Briggs. The required input is the autocorrelation of the

signal. It is computed using Rader's algorithm 119701 and a

code written by Dr. B. Campbell.

Kay and Marple [19811 give a good overview of new

techniques developed in the last two decades for spectrum

analysis. The summary given below follows their discussion.

We model our (discretized) process as a rational transfer

function which produces the output sequence ( x,(t) ) from an

input driving sequence ( w,(t) ) assumed to be a white noise

sequence of zero mean and variance T

The spectrum, S (f), of our data is then:

a a
SX (f) IH(fl aSv(f) - IH(f) 1T (2.Al)

If autoregression is a reasonable model for our process, we

write x,,(t) as an order p linear regression on itself. The

error is represented by w,(t).

P

xn(t) wA(t) - j. ak x . (2.A2)

If A(f) is the inverse filter with a-transform A(z). i.e.,

A(z) - I/H(z) , (2.A3)
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where a a exp ( i2f&t . then the relation between the

autoregressive model and the linear filter with rational

transfer function is

A(z) = z-transform of- a. x a, z (2.A4)

Without loss of generality we assume a = I and incorporate

any filter gain into I

A (z) = [ + a (2.A5)

" Specifying the autoregressive (AR) coefficients ( a ) and

is equivalent to specifying the spectrum of our process {

x .(t) ).

S (f) = P (2. A6)
+ G 0"

The AR parameters are obtained using the relation between them

* and the autocorrelation function which we estimate from the

data. %e write the kth autocorrelation lag as

R (k) Vx x I= Elx (Wa

P

= - R,,R, (k-m) +Ew x I (2.A7)

where E{ I denotes the expected value. Since H(z) is assumed

to be a stable, causal filter we have that

I . . . . . .. . . _ i.
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MT.

(2.AB)h k -O

whore is Kronecker's delta. Using h lia H(z) = 1. we

find

RI A(k) (a VV Xi (k-m) .k>O0

I p~ ,(2.A9)P. a R (-m) ),k = 0

These are the Yule-Walker equations. The AR parameters are

determined by choosing p equations. k > 0. and solving for

( a W.v). k = 1. .. p. q is determined from the equation

for k a 0. The set of equations that requires the fewest lags

is for k = 1.... p. We formulate the following set of

matrix equations, equivalent to (2.A9).

f-
(2.AIO)

The above autocorrelation matrix is Hermitian. Toeplitz (all

diagonal elements identical) and positive definite. The

system can be solved efficiently using the Levineon-Durbin
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algorithm. The actual algorithms used can be found in Kay and

Harple (1981).

2.A.3 Hilbert transform

The wave modulation fields were obtained using the

Hilbert transform. Use of this technique was suggested by

Dr. W. K. Melville. who has used the method to study breaking

waves. Although the technique is well known in communications

theory, its application to the study of surface waves is quite

new. Therefore, we give a brief outline of the method and its

assumptions. following the discussion in Melville 11981). The

reader is referred to his paper and to a thesis by G. Sahar

(19811. The actual computation ot the transform can be done

quite efficiently by using a Fast Fourier Transform (FFT).

IThis exploits the relation between the Hilbert transform of a

function and its Fourier transform. The computer code was a

modification of a program written by G. Sahar. The method

assumes that the data Is causal and weakly narrow-banded.

If g1t) is a real function of time. --° < t < oo then

define the analytic function

h(t) g g(t) - i g(t) (2.A&1)

where g(t) * H.T. 1g(t)J ,- (2.A12)

(H. T. I I denotes Hilbert transform of . . .1. We use the
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following properties of the Hlilbert transform;

1. H. T. ( cos(at + b) I a - sin(at + b)

2. H. T. I sin(at + b) I = cos(at + b)

3. F. T. tg(t)J a i •gn ( F F. T. (g(t)i )

(F. T. I I denotes Fourier transform of . .

F.T.1g(t) =: -)L e dt

4. F.T.th(t)3 = 2 F.T.(g(t)I , s > 0 or s * 0

0 s< 0

5. The Hilbert transform is a linear functional of g.

If we represent our real measured time series g(t) as a

Fourier series

g(t) = Re ( a expt I I ) (2.A131
nro

where a. and 0 are the amplitude and phase of the nth Fourier

component, repectively. then by properties 1) and 5):

H.T.Cg(tt)] = - Im aV exp( i I ) (2.A14)

In general, if our data is given as

g(t) =Re C a(t)exp(i c (t)J) ( (2.A15)

We define the analytic function h(t)

h(t) at g(tI-i g(t) = a(t)expfL (t)i (2.A16)

The amplitude aft) is given by

aft) g . (2.A17)

and the phase Oft) is given by

,-..-'.: ..K'-. .-.. .,, . .-;
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-0(t) - arctan (g /g) (2.A[S)

For our observations we assume the following model:

g(x.ti = Re ( a(xLt) expC i (06t + e(x .t) 11 ) , (2.A19)

where x~corresponds to a fixed wavegauge location and A9o is

the wave carrier frequency. The analytic function h(xLt) is

defined as,

h(xLtl a-g(x ,t) - L g(x ,t)

a a(x!.t) exp( i (it + e(x.t) 13 (2.A201

If we think of the signal (in time) as the product of a

rapidly varying carrier wave and a slowly varying modulation,

then the complex envelope is described by

A(xj.t) = a(xt.t) exp( I e(x,.t) I (2.A21)

where a(x,.t) is the amplitude modulation which we determine

using 2.A17. The phase modulation. 8 (xi.t). is given by

6 (x.tI* L/xb~I - S~t(2.A22)
A

. arctan(-g / g1 - (ast

using 2.AB. However, the phase modulation is a continuous

function of time whereas the arctangent is restricted to the

interval (- 1/2, 923. Instead of using the arctangent. we

Uactually solve for the cosine and sine of which extends our

interval to (- KC , rL 1. Both the principal value of the phase

and an 'unwrapped' phase are calculated. The unwrapping

..7iiiiii; i i ~ iii ~ ~ i iii i i .
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technique looks for discontinuities in the principal value and

adds in a multiple of 2 r to get the continuous phase

function. The carrier frequency J. was determined from HEM

spectra at the most upstream observation. This Initial

carrier frequency was removed from the phase modulation for

.* all the wavegauge signals for a given experiment. This was

done in order to specify a real data initial condition to the

cubic-nonlinear Schrodinger (NLS) equation (Chapter 3). This

equation governs the slowly varying complex modulation

envelope A(xL,t) (carrier removed) of surface gravity waves on

deep water. The further fetches were transformed for

comparison with the numerical evolution. All the data was

bandpass filtered in a band of width one hertz centered on the

carrier. Both the transform method and the cubic NLS equation

imply a weakly narrow-banded assumption. (The Hilbert

transform requires the bandwidth of the spectrum to be less

than or equal to 2f.) Melville refers to Schwartz at al.

(19661). The carrier frequency is added back in to the

frequency modulation which is calculated as

f(x.,t) = &4 (2.A23)f (XL , : 0
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CHAPTER 3

MODELLING OF SURFACE WAVE GROUP DEVELOPMENT

3.1 INTRODUCTION

The wave group development described in chapter 2 was

modelled numerically using the cubic nonlinear Schrodinger

(NLS) equation. The amplitude and phase modulations from the

most upstream wavegauge observation (6.1 meters) were obtained

using the Hilbert transform and specified as an initial

condition for the numerical model. The transformation from a

spatial evolution in the wave channel frame of reference to a

temporal evolution in the numerical frame was accomplished

using the linear group velocity. This transformation has been

employed by Benjamin and Feair (19671. Benjamin (19671. Chu and

Moi (1970, 1971), and Lake et al (19771 to make comparisons

between theory and experiment. Further details on the

assumptions made in both the modelling and the comparisons

will be discussed below and at greater length in the

appropriate sections.
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The cubic NLS equation, which we derive In the next

*- section. describes the slowly varying complex envelope of

gravity waves on deep water. The theory is weakly nonlinear,

narrow-banded and inviscid. By narrow-banded we mean that the

wavenumber and frequency are assumed to be slowly varying

about their mean (constant) values. For continuous wavetrains

the cubic NLS equation recovers the modulational instability

of Benjamin and Feir (the growth of perturbations whose

frequencies are sidebands to the carrier wave frequency).

However, the sideband growth remains symmetric about the

carrier, and the equation can not describe a frequency

downshift such as that observed for steep wavetrains Lake et

al 19771 and as seen In chapter 2 In wave groups.

The modulational instability does not, however, lead to

thermalization and disintegration of the wavetrain. If

dissipation were present, the growth could perhaps be balanced

and result in steady. limit cycle behavior. However, when

dissipation is absent, as in the Inviscid model, recurrence of

the linearly unstable mode is observed. That is. after

reaching a maximum modulation, the wavetrain demodulates and

eventually returns to its initial state. There is neither a

steady end-state nor thermalization of the wavetrain. Instead

we find a long-time periodic behavior that is characteristic

of other undamped nonlinear systems and known as the

Fermi-Pasta-Ulam recurrence phenomenon. There have been no
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long-time observations to verify FPU-recurrence for wavetrains

due to restrictions of wave tank length. However.

observations (Lake et al 19771 indicate that an initially

uniform wavetrain, after modulating, demodulates and reforms

into a nearly uniform wavetrain of slightly lower frequency

(frequency downshift).

So far, we have cited results of the model for continuous

wavetrains. For pulse-like initial conditions (i.e. wave

groups), the cubic NLS equation can be solved exactly using

the inverse scattering transform developed by Gardner et al

(1967). The inverse scattering method does not apply to

continuous wavetrains. The recurrence phenomenon in wave

groups is related to the bound state of solitons predicted by

Zakharov and Shabat [19721 from the inverse scattering

solution of the cubic NLS equation. The bound state is a

long-time periodic behavior with eventual recurrence of the

initial condition. The recurrence cycle does not result from

a sideband instability but rather from a strong interaction

between solitons with identical velocities which remain

superposed. Yuen and Lake (19761 mention that there is no

straightforward physical interpretation of the bound state (it

was predicted when the sigenvalues of the related scattering

problem are purely imaginary). They also suggest that

dissipation may rule out the possibility of recurrence in wave

groups. They did not think that they had observed the bound
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state in their wave group experiments although they mention

that the component soliton speed differences were very small

[Lake at aL 19771. Satsuma and Yalima (19741 did a

theoretical and numerical study in which they predicted the

occurrence of the bound state from properties of the initial

condition. There has not been an observational study which

tested their predictions.

Thus, in using the inviscid cubic NLS equation to model

the wave group evolution, there are two important effects

which we can not expect to describe: the observed frequency

downshifting of the steeper experiments and the cumulative

effect of dissipation. However, we can use the model in

comparison with the observations to answer several important

questions. What is the limit of validity of the cubic NLS

model? On what time scale does dissipation act? In the

presence of dissipation, is recurrence physically realizable?

We propose to describe in detail this recurrence

phenomenon (bound state) for wave groups. From amplitude

modulation alone, it is difficult to determine the type of

wave interaction that is taking place: linear dispersion

(radiation). soliton or bound soliton. However, the

differences in the phase modulations of the above types of

behavior seem to be quite distinct. First. we analyze the

phase modulation of exact solutions of the cubic NLS equation
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to see how the phase evolves for different types of behavior.

Using this as a guide, we can interpret and compare the

development of the phase modulation in the numerical model and

in the observations.

In an attempt to include dissipation in the model, we

have tried various linear balances of dissipative terms with

complex constant coefficients. Admittedly, this is an

arbitrary procedure. We examine the possible effect that

dissipation might have on the phase, in particular, the role

dissipation might play in frequency downshifting. At least

for the linear balances that were attempted. dissipation was

shown to affect only amplitude. A decay rate estimated from

the observations (Table 2.3) was included to model the

amplitude damping. These viscous numerical evolutions are

also compared to the observations and the inviscid solutions.

Although there is no direct effect on the phase, by changing

the 'quantum' of the soliton the long-time behavior of the

dissipated solution was sometimes altered from that of the

inviscid solution and this was reflected in the phase

modulation development.

In the next two sections we derive the cubic NLS equation

and the numerical model. Section 3.4 examines the evolution

from initial conditions for which we have exact analytic

solutions. In section 3.5 we include the effect of
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dissipation. This is followed by a comparison between

observations and numerical solutions, both inviscid and

viscous. Section 3.7 presents a discussion and summary.

3.2 FORMULATION OF THE SCHRODINGER MODEL

3.2.1 Background

Zakharov 19681 was the first to derive the

two-dimensional Schrodinger equation in the context of deep

water waves using a van der Pohl (multiple scales) method.

Zakharov and Shabat (19721 then solved the one-dimensional

cubic NLS equation exactly for pulse-like initial conditions

using the inverse scattering transform. They showed that an

arbitrary pulse evolved into a number of solitons and a

relatively unimportant linearly dispersive tail. Unlike the

soliton solutions of the KdV equation, the velocity and

amplitude of these solitons are independent of each other.

The KdV equation has long been known to describe shallow water

waves of permanent form. It can also be solved exactly for

pulse-like initial conditions using the inverse scattering

method. Zakharov and Shabat examined the stability of the

soliton solutions of the one-dimensional NLS equation. They

found them to be stable in the sense that the solitons survive

pairwise collisions with no permanent change except for a
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ble shift in position and phase. The amplitudes and

ities of the solitons remain unaltered. They are also

e or neutrally stable to one-dimensional perturbations

ral in the sense stable but tending asymptotically to a

on of slightly different parameters).

What is principally new compared to KdV solitons is the

bility of the formation of a 'bound' state of a finite

r of solitons having identical velocities. The simplest

of two solitons is a periodic-in-time solution

cterized by a single frequency. In the case of

itons it is an arbitrarily periodic solution

cterized by N(N-l)/2 frequencies.

Proceeding along somewhat different lines, Chu and Mei

, 19713 applied a WKB-perturbation technique to study the

modulation of a deep water Stokes wavetrain. They found

new dispersive terms representing the modulation rate and

e same order as the nonlinear correction were needed to

d the scope of validity of Whitham's therry based on an

god Lagrangian. Differences between the Chu-Mei

ions and the Schrodinger equation were resolved by Davey

I. Yuen and Lake (19751 showed the equivalence of the

dinger equation to a higher order theory of Whitham's

d. Thus all existing theories yield the same equation to

rder considered, and earlier discrepancies have been
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accounted for due to expansions to different orders.

Chu and Mei found that the dispersive term removed the

singularity encountered in the application of Whitham's

theory. They likened Whitham's theory to the Airy equation

where amplitude dispersion causes the wave to continue to

steepen unt l shocks occur. To extend this analogy they

likened their equations to those of Boussinesq. The presence

of frequency dispersion counteracts the effect of amplitude

dispersion thus eliminating the early occurrence of shocks.

Hence there is the possibility for waves of permanent form

where amplitude dispersion exactly balances frequency

dispersion (soliton solutions).

They proceeded to study the nonlinear evolution of wave

envelope on deep water numerically. One of their equations

contains the envelope amplitude in the denominators hence

their calculations break down at the first occurrence of a

node in wave envelope. Based on their calculations they

conjectured that the envelope disintegrates to multiple groups

of waves each of which approaches a stable permanent envelope

with dynamical equilibrium between amplitude and frequency

dispersion. In actuality, the analytic initial condition that

they chose to study numerically was the exact 2-soliton

solution (a hyperbolic secant with width to height ratio twice

that of a solitoni. They cannot follow the evolution after
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the first node occurs, at time T. but what actually happens is

that the initial condition reconstructs itself at time 2T (and

at 2nT. n = 1. 2. 3 . . This was pointed out in a

comment by Roskes £19761 who did the numerical evolution using

the Schrodinger equation rather than the equivalent Chu-Mei

equations and hence was able to observe much longer evolution.

He points out that the initial condition used in the

laboratory experiments of Yuen and Lake (1975] is also that of

a 2-soliton. He suggests that the expected evolution would be

a periodic (period T) nondiverging bound state.

In a reply to Roskes comment. Yuen and Lake (1976]

mention that there is no straightforward interpretation of the

occurrence of a bound state. Hence it would be difficult,

based only on this information, to try to produce the correct

profiles experimentally. Although they attempted to vary the

initial state (sech. sin, etc.), they did not see the bound

state phenomenon~i.e., they did not see the initial condition

reconstruct itself. They attribute their observations to

several possible explanations. First, the initial condition

required may be very sensitive. Secondly, the cumulative

effect of dissipation may become important. perhaps on the

scale of T a recurrence period. This would prevent recurrence

from being observed even when initial conditions are

favorable.
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Although Yuen and Lake do not see recurrence in their

* experiments in the sense that the initial pulse reconstructs,

the solitons do not seem to separate. Lake et al (19771

mention that the component soliton phase speed differences are

quite small. This may be due to the observation period not

* being long enough. However, it remains open to question

whether they have observed the bound state (solitons do not

r* separate) where recurrence can not take place due to

dissipation, or whether they have solitons that diverge

(although not observed for long enough time). They do not

describe the phase of their observations. As we see next, the

phase of the initial condition can be used to predict the

occurrence of the bound state (in some cases). Besides

considering the initial phase. the evolution of the phase in

the cases of linear dispersion, divergent solitons and the

bound state is different.

Satsuma and Yajima (19741 did a theoretical study of the

nonlinear Schrodinger equation as an initial value problem.

They managed to classify certain initial conditions as

yielding nondivergent bound states and certain others as

yielding the divergent soliton states. They confirmed their

predictions using numerically computed solutions to the

various types of initial conditions. We summarize their main

results in section 3.2.3 after first deriving the governing

equation in the next section.

U: . : i • . . .. .. .
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3.2.2 Simple derivation

The derivation given in this section follows the rather

elegant variational approach used by Yuen and Lake (1975).

We use x. z. t to denote the horizonal coordinate,

vertical coordinate (positive upwards) and the time. ,

+b-) is the two-dimensional Laplacian operator. and 9

is the two-dimensional gradient operator.

The basic governing equation for inviscid surface gravity

waves on deep water is Laplace's equation within the fluid:

,z 0 < LAt) (3.1)

"Lj ,0 is the free surface elevation. The velocity L is

the gradient of the potential:

L (3.2)

The bottom boundary condition for a fluid of infinite depth

is:

--, o -0- .
(3.3)

The nonlinear surface boundary condition is:

,, + + + (- , 1 . -., + 0 3 4

The surface boundary condition is evaluated on the unknown

free surface 1 The free surface is related to the

potential by:
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v~v ~ Vj(t'~(3.5)

For small amplitude waves, we can expand the surface

boundary conditions (3.4) and (3.5) in Taylor series about z =

0. If we expand the velocity potential 4q and the surface

elevation in a perturbation series in the wave steepness

parameter . ak (amplitude x wavenumber) we find Stokes

series solution (1847).

S

Instead we follow the variational approach given in Yuen

and Lake (19751. If we can find a Lagrangian L(x.t) to

describe our system, then the evolution of the system is

described by the variation of the averaged Lagrangian:

~c~uci 0 (3.6)

where (t * LL de (3.7

if a phase function 6 exists. The characteristic frequency

a and wavenumber k are given by

9

it 04 (3.8)

4

The Lagrangian for deep water waves has been shown to be

+ ILL14~ 3~ (3.9)

For a weakly nonlinear, slowly varying, modulated wavetrain we

expand 1 and as an amplitude modulated Stokes wavetrain
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C&LEX: CLt~) bD~ + Ako4..((1 tN C- al (3. 10)
(a , U.11 eht' 0t .

e 4 ~ (3.11)

where & " L- is the phase function. If we substitute

(3.10) and (3.11) into (3.91 and average we find from (3.7)

' ~1 k- L4* + f- - + -

4 , +- - ( 3 .1 2 )

Variations with respect to 8 and o. yield, respectively.

+o')i (C.,~~) 0 -O (3.13)

CAll

(3.131 is the energy equation, and C- is the linear group

velocity.

(3.15)

(3.14) is the dispersion relation. The curvature or

modulation rate term (/19,) is the additional term first

derived by Chu and Mei (1970, 19711. (3.14) is obtained using

(3.13). These equations are valid to 9(6G, ) The system is

closed with a consistency or conservation of wave crest

equation

0 (3.16)

To derive the NLS equation, we perturb the phase function

• " ; ' .' " " . ', - '' . . - "- ' ' , . 7 - . . - --. . . .
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4 ( (3.17)

II t

Equivalently. t,: "-"(3. 18)

This assumes a constant carrier wave of wavenumber 4a and

frequency Oo ie assume the variations of c9 and

. are small compared with variations of . and are

slowly varying.

If we substitute (3.17) and (3.18) into (3.13), (3.14) and

(3.16) we obtain
U0

;t 1 S a. (3. 19)

L. (3.20)i ~. ,kho= d o s.o

Introducing the complex variable A=r. (3.191 and (3.201

combine to become the cubic NLS equation

t (3.21)

If we scale the equation as follows

ko Lt - ( .2

(3.21) becomes

T 0(3.23)

(3.23) is the dimensionless form in a frame which propagates
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at linear group velocity

3.2.3 Properties of the Schrodinger equation

Zakharov and Shabat (19721 have demonstrated the

existence of an infinite number of conservation laws for the

Schrodinger equation. An enumerable set of these which

conserve certain spatial integrals of A and its derivatives

are called polynomial laws. A similar set of laws has been

found for the KdV equation. We list the first five:

0

C3  S( l - ~ )(3. 24a)

44

12, 1 Aj
+ 4 (3.24c)

~~I Ia + 8 -L4Q (z i~ -~A1~~~ 3.24e)

The first three conserved quantities have a physical

meaning in the context of the nonlinear Schrodinger equation.

They correspond to conservation of the number of particles

(mass), conservation of momentum, and conservation of energy.

respectively. This interpretation is correct to Zirst order

for the mass and momentum of the wave motion (Yue, 1980).
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Equation (3.231 has exact solutions, called solitons,

-2 which are progressive envelope pulses of permanent form whose

heights and widths are inversely proportional to each other

but are unrelated to their speed U relative to the linear

group velocity. The soliton solution to equation (3.23) is

given by

or for equation (3.21) in dimensional form in coordinates

fixed in space:

'C (3.25b)

e.A? IL L4 ~k .ai

Equation (3.23) also has similarity solutions for

decaying oscillations (radiation) which decay like linear

dispersion as and contain two arbitrary constants Ao and

in amplitude and phase respectively.

c + ~ A' JVL 63 (3.26)

In section 2.3.1 of chapter 2 we have already discussed

properties of the inverse scattering solution of (3.23) for

pulse initial conditions.

We can put the NLS equation (3.21) in standard form using

the following scaling

1
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~k~~- Li~t.)A -(3.27)

to find, in accordance with Satsuma and YaJima [19741,

L%~ ~V~\ ~o(3.28)

The soliton solution in the new variables is

Satsuma and Yajima show that the equation is both

Galilean and gauge invariant. By Galilean invariant we mean

invariant under the transformation

(3.30)

By gauge invariant, we mean that it is invariant to constant

phase shifts

An arbitrary pulse evolves into a number of solitons and

an oscillatory tail. The solitons are bound if their

velocities are the same. This occurs If the eLgenvalues of

the associated scattering problem have common real parts.

Satsuma and Yajima (19741 tried to relate this eigenvalue

condition to the initial value problem. We summarize their

-- . . .. . . . . . . .
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main results as follows. Write the solution as

A -L) e- (3.32)

where R is the amplitude modulation and p is the phase

modulation. Then they showed that

1.) If the initial condition is real and not antisymmetric

then the solution A is the bound state. The eigenvalues of

the related scattering problem have zero (common) real part.

2.) It the initial value takes the form

then all the eigenvalues have the same common real part and

the solution is a bound state.

3.) If A is a solution to (3.28) and A is real and not

antisymmetric

then we perturb A such that A * A + dA where Im( dA ) is

nonzero (i.e. small random phase perturbation). Then the

eigenvalues have noncoinciding real parts and the perturbed

solution should break up into moving (divergent) solitons.

4.) If A antisymmetric

then the solution breaks up into divergent solitons.
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Our wave group data has nearly zero initial phase. Using

the Hilbert transform, we have a method for examining the

phase evolution with propagation distance. We can also, from

exact asymptotic analytic solutions with known initial

conditions, examine the phase evolution of radiation. solitons

and bound state. These characteristic phase evolutions are

then used to classify the observations and the numerical

evolutions of the NLS model. We next derive the numerical

model and then proceed to study the evolution of model

solutions from a variety of initial conditions (real data and

analytic functions) with comparison to observations.

3.3 NUMERICAL MODEL

W&e solve the cubic NLS equation using a modified

Crank-Nicholson implicit scheme with second-order centered

spatial finite differencing. The scheme and computer code

were takea from a thesis by Yue (19801. For coimpleteness. we

include the details of the numerical scheme here.

Prior to modelling, data from the most upstream (6.1 mi

observation were converted from wavetank (x.t) to numerical

model (x,tI cooordinates using the linear group velocity.

C. t C. (3.33)

The data were then scaled appropriately using (3.22). Data
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from the further fetches were also transformed and scaled like

the initial condition for comparison.

The finite difference form of (3.23) is

-. +~~ ~ AP, ,+i (3.3',1

where Aj
1

The implicit nonlinear term is estimated using an Euler

scheme that maintains a local truncation error of

. = r~. _- (j * 4 - a "
b . V I ( 3 3 5 )

Equation (3.34) is convergent with global truncation

error ( aa) The cubic nonlinear term complicates the

stability analysis. However, the Crank-Nicholson scheme is

unconditionally stable for the linear Schrodinger equation.

Yue (19801 provides the details of the linear Neumann

stability analysis. Numerical solutions for reasonable

choices of &T and 61 gave quite good results. The first

conservation law (3.24a) was computed at each time step as a

check on the error
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C1(tr - C.(o)
rro" -- (3 36)

largest final error was five percent. Typically. the

r was less than one tenth of one percent.

The boundary condition used was

IAt-) 0 " -- (3.37)
I

EXACT SOLUTIONS

In this section we examine the evolution of exact

ptotic solutions of the Schrodinger equation for initial

itions specified from analytic functions. We try to

acterize the types of behavior thus modelled to use in

mifying the evolution from actual observations discussed

r on in section 3.6.

The nondimensionalized equation that we solve is (3.23).

scales for the variables are given by (3.22). The initial

ition is

~ (3.38)

s max f( - I due to normalization. We solve for A

; the numerical scheme of the previous section. We write
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(3.39)

where R represents the amplitude modulation and p represents

the phase modulation normalized by iT

The first five cases that w4 consider are for spatially

compact initial profiles of symmetric sech form:

(I3 ) = L f ' / q ) (3.40)

This form of initial condition is purely real (p = 0). Hence

we use the formula (2.7) to estimate the number of solitons in

the asymptotic state.

~z (3.41)

For integer values of q we get an exact number of

solitons. For noninteger we get solitons plus radiation.

When 7 < 1, only radiation (linear dispersion) is present.

Since the initial condition is real and symmetric, the results

of Satsuma and Yajima cited in 3.2.3 predict the bound state

of solitons when > 1 2.

As a final example we look at the evolution of an

antisymmetric initial condition which yields divergent

solitons.
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3.4.1 Radiation

We consider a steeper-than-soliton profile of form (3.40)

with ( r 1/2.

41 ) td~(Cr'j (3.42)

The asymptotic state contains no permanent soliton and the

evolution is dominated by linear dispersion. The dispersion

or radiation is considered as a slowly varying modulation of

form (3.26) where AO, I, are now functions of ("k). The

amplitude and phase are given by:

I = ao/FF- (3.43a)

+ oLvi. (3.43b)

The full solution (magnitude of complex envelope) is

plotted in figure 3.1 for -12.5 < < 12.5 and 0 < IC < 10.

The percent error calculated from the first conservation law

(3.36) is .003 percent. By comparinq the centerline (= 0)

amplitude decay to the asymptotic rate (3.43a) we find that

the deviation is small for ;> 5. and at L = 18 the

asymptotic state is fully achieved. From the first conserved

quantity (mass)

h th Afor- ' ; [ = L(T, (3.44)

We see that the length scale L of the envelope increases
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linearly with time.

Figures 3.2a and 3.2b show the amplitude and phase

modulation at various times. The amplitude decays like for

T > 5. The initial phase modulation is zero. The phase

evolution for radiation behaves like (3.43b). The phase

* appears discontinuous in fig. 3.2b because it is 'wrapped'

(Appendix 2.A). It is actually a smooth continuous function,

and the jumps of 2r occur from using the principal value of

the arctangent which is defined on the (expanded) interval

o- , * 
1. The initial group is centered at' * 0 in a frame

that propagates at linear group velocity. The center value of

the phase decreases with time and exhibits a smooth and

symmetric spatial decay from the origin like (-I' This

represents the dispersion of wavenumber components in the

moving reference frame.

Figures 3.3a and 3.3b show the amplitude and phase

modulations at four different times ( t * 0. 2. 6. 10)

superposed. Notice that as the centerline amplitude

decreases, and the envelope length scale increases, that the

off-center amplitude increases initially as the group spreads

(radiates).

r7

." - . . o . .. • . . . . . . .
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Fig. 3.1 Numerical evolution of a steeper-than-soliton initial
profile (1/2-soliton). The magnitude of tho complex envelope
is platted in a spatial frame that propagates at the Linear
group velocity. -12.5 < X < 12.5. The length of the timea
evolution corresponds to T =10.
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* T 86

T =2

U

i.I

-. 2 T 16

NONDIM OISTRNCE
Fig. 3.2b Evolution of the principal value of the phase
modulation, normali2ed by pi, at 7 successive time steps
corresponding to the amplitude modulation of fig. 3.2a.
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* Fig. 3.3a Superposition of amplitude modulation at 4 different
* times, T =0. 2. 6. 1.0, corresponding to the 1/2-soliton

initial condition.
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Fig. 3.3b Superposition of phase modulation at 4 different
times. T 0. 2, 6, 10, corresponding to the amplitude
modulation superposition of fig. 3.3a.
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3.4.2 Soliton

The next example is for an exact one-soliton ( = )

solution. The initial condition is

s( (3.45)

The asymptotic solution is given by

-- A
with i t) "-4 ra (3.46b)

"4 I (3.46c)

The solution is plotted in figure 3.4 for -12.5 < 

12.5 and 0 < < (10. The error Is .001 percent. Figures 3.5a

and 3.5b show the amplitude and phase evolution at various

time steps. Figs. 3.6a and 3.6b show the superposed

amplitudes and phases at four time steps (T a 0. 2. 6. 10).

The amplitude modulation shows a steady permanent profile.

The phase modulation shows a constant downward shift in time.

We see some linear dispersion in phase (with zero amplitude)Fat the edges due to numerical noise.
3.4.3 Bound state

The initial condition is that for the simplest bound
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Fig. 3.4 Numerical ovolutiol: of a one-soliton initial profile.
The magnitude of the complex env'elope is plotted in a spatial
frome that propagates at the linear group velocity. -12.5 < X
< 12.5. Th. length of the time evolution corresponds to T _
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3 T =10

T =8

WL T =6

T 2

T= I

X T 0

2.5 -7.5 so .so 2'.58 7.5§ 12.59 17.56 22.5so
NONDIM DISTANCE

Fig. 3.5a Evlto fthe mgiueof the complex envelope
plotted-at 7 successive time steps (time increases upwards)
for the 1-soliton Initial condition.

r
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T 4

T 2

21
Fig. 3.5b Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time steps
corresponding to the amplitude modulation of fig. 3.5a.
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state containing two interacting solLtons and one recurrence

frequency. The initial condition, with = 2. is

T () Uk r I / Q I) (3.47)

The first recurrence of the initial condition takes place

at -- 12.6. This case was first studied numerically by Chu

and Mei (19711 who showed the initial development but not the

long-time (recurrence) obehavior. Roskes (19761 was the first

to show numerically that this initial condition evolved into a

nondivergent bound state.

Figure 3.7 shows the evolution for -12.5 < I < 12.5 and

0 < L < 30. The error at the final time step is .3 percent.

Figures 3.8a and 3.8b show the amplitude and phase

modulations. From the initial condition the soliton evolves

to a narrower pulse of twice the height with symmetric

sidelobes ( U =6.3). Between the sidelobes and the central

pulse we see nodes or zeroes in amplitude. The initial phase

is uniform and zero. It is seen to modulate ( C = 3.2) and

then return to uniform except for 2 discontinuities: a jump

of A connects 2 sides of nearly constant phase. The jumps

occur in I at the location of the amplitude nodes. In the

complex plane this means that A has constant phase angle and

passes through the origin so that there is no discontinuity in

derivative across the node.
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Fig. 3.7 Numerical evolution of a two-soliton initial profile.
The magnitude of the complex envelope is plotted in a spatial
frame that propagates at the linear group velocity. -12.5 < X

< 12.5. The length of the time evolution corresponds to T
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T 15.8

T =12.6
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X, T =3. Z

cc T =

-7.581 2S .9 75 2S 7S 25

Fig. 3.Ba Eouino h antd ftecmlxevlp
plotted at7 successive time ses(time increases upwards)
for the 2-soliton initial condition.
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Fig. 3.8b Evolution of the principal value of the phase
corresponding to the amplitude modulation of fig. 3.8a.
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rig. 3.9. Superposition of amplitude modulation at 4 different
* times, T - 0. 6.3, 12.6. 18.9, corresponding to the 2-so/jton
* initial condition.
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Fig. 3.9b Superposition of phase modulation at 4 different
times, T 0,~ 6.3. 12.6. 18.9. corresponding to the amplitude
modulation superposition of fig. 3.9a.
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The phase modulates again ( L * 9.8) as the solitons

interact to reconstruct the initial condition at T 12.6. The

phase is again uniform but with a small constant phase shift

as in the evolution of the one-soliton. The oscillation is

seen to go back and forth between two end-states: the initial

condition and the narrower, steeper pulse with sidelobes (the

minimum and maximum In amplitude modulation, respectively).

At each of these 2 end-states the phase is nearly uniform,

with the exception of discontinuities in phase at the nodes of

A. The intermediary stages (growing and decaying modulation)

between these two end-states also recur (T = 3.2, 9.8, 15.8).

Figs. 3.9a and 3.9b show the superposition of four times

(T = 0, 6.3, 12.6, 18.9). In amplitude we see that the

recurrence is exact (fig. 3.9a). In phase we see clearly the

small, constant decrease in phase at each recurrence of the

two end-states. A

3.4.4 Soliton plus radiation

The next example Is for an Initial condition that

represents a soliton plus radiation. The initial condition

takes the form ( * 3/2)3

Ts uan n r a - . (3.48)

The full solution can be seen for -12.5 < < 12.5 and 0 <
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t < 30 in figure 3.10. The overall picture shows a slowly

decaying recurrence.

The amplitude and phase modulations are shown in

figs. 3.11a - 3.lLd. The initial condition is like the

previous example for a 2-soliton bound state. There is more

mass in the initial pulse than in the 1-solLiton state but less

than is required for a 2-soliton. The initial pulse evolves

into a narrower, steeper pulse with amplitude nodes and

symmetric sidelobes at T a 6.3. The amplitude of this steeper

pulse is 1.5, smaller than that of the previous 2-soliton

which was 2. The initial phase evolution is also similar to

that of the 2-soliton. The phase evolves from initially

uniform (zerol to modulated at T =3.2 to nearly uniform again

at T - 6.3 except for jumps of Tr connecting 2 sides of

nearly equal phase at the locations of the amplitude nodes.

However, the phase is not nearly as uniform as in the

2-soliton case' we clearly see small ripples in the phase.

Also, the central value of the phase (about o * 0) is lower

than the initial value, in contrast to the 2-soliton case

where it is higher.

There is a damped oscillation between the 2 end-states of

the previous example. The center amplitude decays slowly with

time, approaching its asymptotic I-soliton state of nearly

uniform phase. The decay is not monotone. We see evidence of
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Fig. 3.10 Numerical evolution of a soliton plus radiation
(3/2-soliton) initial profile. The magnitude of the complex
envelope is plotted in a spatial frame that propagates at the

* linear group velocity, -12.5 < X < 12.5. Th. length of the _

time evolution corresponds to T 30.
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Fig. 3.11. Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (timA increases upwards)
for the 3/2-soliton Initial condition.
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modulation. normalized by pi, at 7 successive time stops
corresponding to the amplitude modulation of fig. 3.11a.
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Fig. 3.11c Frhrevolution of the Magnitude of the complex
envelope plotted at 7 successive time steps (time increases
upwards) for the 3/2-soliton initial condition.
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Fig. 3.lld Further evolution of the principal value of the
phase modulation. normalized by pis at 7 successive time steps
corresponding to the amplitude modulation of fig. 3.lLc.
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ther partial recurrence of the steep narrow pulse in

3.10 and in figs. 3.11c and 3.11d at T = 22. The center

litude is slightly less than at T a 6.3, and the sidelobes

more spread due to the dispersive tail. The phase has

ps at the locations of the amplitude nodes. The time scale

this first quasi-recurrence is longer than in the previous

mple. At T = 30 which is the l.ist L;e shown (fig. 3.11c),

asymptotic state has not yet been reached. The maximum

litude is about 1.17, and the amplitude of the tail

- o ) is still larger than that of a 1-soliton. The

iation can best be seen in this growth in amplitude of the

I at a distance from the origin as in the case of pure

iation (fig. 3.3a). In contrast, the amplitude of the tail

the exact soliton solutions is constant and steady

gs. 3.6a and 3.9a).

In the phase modulation the central region of the phase

out I a 0), where the soliton behavior dominates, remains

rly uniform (slight curvature) with small constant shifts

successive times. There is a background of linear

persion as seen from the symmetric decay (strong curvature)

the phase which dominates in the tail ( *->t ). With

a, the phase modulation is seen to flatten as the linearly

persive components radiate away. and the soliton

Uptotically approaches the uniform phase of the 1-soliton.
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3.4.5 Bound state plus radiation

The next example is for an initial condition that yields

a bound state plus radiation. The initial condition is ( T =

5/2):

= J/S') (3.49)

The overall evolution is shown in figure 3.12 where we

see approximately two recurrence cycles. The evolution is

similar to the previous two examples of 2-soliton and

3/2-soliton. The recurrence time scales are slightly

different in each of the three cases. This can be seen from

the full solutions and from comparing them at fixed times (the

amplitude and phase modulations for the 5/2-soliton are shown

in fig. 3.13). The times chosen are optimal for seeing the

recurrence of the 2 end-states of the 2-soliton bound state.

The evolution is best distinguished by the phase

(figs. 3.13b, 3.13d). The large jumps of 2T[ result from

using the principal value of the arctangents the phase is

continuous at these points. We still see the jump of R at

the node locations when T - 6.3 (figs. 3.13a. 3.13b). The

background of linear dispersion is evidenced by the symmetric

decay (strong curvature in the phase) that dominates in the

tail.
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Fig. 3.12 Numerical evolution of a bound state plus radiation
(5/2-soliton) initial profile. The magnitude of the complex
envelope is plotted in a spatial frame that propagates at the
linear group velocity, -12.5 < X < 12.5. The length of the
time evolution corresponds to T -30.
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Fig. 3.13b Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time steps
corresponding to the amplitude modulation of fig. 3.13a.
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F Fig. 3.13c Further evolution of the magnitude of the complex

envelope plotted at 7 successive time steps (time increases
upwards) for the 5/2-soliton Initial condition.
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Fig. 3.134 Further evolution of the principal value of the
phase modulation# normalized by pi. at 7 successive time step*
corresponding to the amplitude modulation of fig. 3.1L3c-
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Fig. 3.14a Superposition of amplitude modulation at 4
different times, T -0. 6.3. 12.6, 18.9, corresponding to the
5/2-soliton initial condition.
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Fig. 3.l4b Superposition of phase modulation at 4 different
times. T - 0. 6.3. 12.6. 18.9. corresponding to the amplitude
modulat-ion superposition of fig. 3.14a.
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The bound state interaction is characterized, as in

fig. 3.8b. by an oscillation between 2 end-states of maximum

and minimum amplitude modulation. The phase is nearly uniform

at the extremes of amplitude modulation (T = 0, 6.3. 23) and

is modulated during the transitions (T a 3.2. 18.9. 30). That

the 2-soliton interaction is still occurring is evidenced in

*the modulated central phase behavior at T a 30. This can be

compared to the phase in the previous 3/2-soliton evolution

which approached a uniform 1-soliton state. Fig. 3.14a and

3.14b show a superposition of amplitude and phase modulations

at four times (T 0, 6.3. 12.6. 18.9).

3.4.6 Divergent solitons

For our final example we examine the case of divergent

solitons

A4. j (,G~ U'-~ a1 f'~4~)/ (3.50)

This case was first examined numerically by Satsuma and

Yajima (1974) and is shown in fig. 5 of their paper. The

initial condition is antisymmetric and yields two divergent

solitons of equal amplitude and equal but opposite velocities.

Figure 3.15 shows the evolution. Figures 3.16a-3.16d show the

amplitude and phase evolution at various times.

4j
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Fig. 3.15 Numerical evolution of divergent solitons from an
antisymmotric initial profile corresponding to figure 5 of
Satsuma and Yajima (19741. The magnitude of the complex
envelope is plotted in a spatial frame that propagates at the
linear group velocity. -12.5 < X < 12.5. The length of the,
time evolution corresponds to T - 30.
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T =30. 0

U,

T = 27. 0

T= 26. 0

IX

se -

-12.11 -7.56 -2.56 2.51 7.56 12.56 17.51 22.58
NONDIM DISTANCE

Fig. 3..16b Further evolution of the magnitude of the complex
envelope plotted at 7 successive time stops (time increases
upwards) for the divergent soliton initial condition.
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a-T 1 2. 6

a*T 6. 3

T 0

-1.I -. 6 -. d 2.51 7.5 12.56 17.56 Z2.56
NONDIM DISTRNCE

Fig. 3.16c Evolution of the principal valu6 of th. phase
modulation, normali zed by pi. at 7 successive time steps
corresponding to the amplitude modulation of fig. 3.16a.
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* T =26. 0

T 5

T 4

'A

T 3

LO

E:

-15 -. e -2.56 2.56 .5 12.56 17.51 ZZ so
NONDIM DISTANCE

p3.168 Further evolution of the principal value of tlh.
kse modulation, normalized by pi.. at 7 successive tiie "
reosponding to the amplitude modulation of f~q. 3 .6
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Fig. 3.17a Superposition of amplitude modulation at 4
different times. T u O, 6.3. 12.6. 18.9. corresponding to the
divergent soliton initial condition.
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Fig 5o (S & Y)
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NONDIM DISTRNCE

Fig. 3.17b Superposition of phase modulation at 4 different
times. T a 0. 6.3. 12.6, 18.9, corresponding to the amplitude
modulation superposition of fig. 3.17a.
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Fig 5b (S & Y)
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Fig. 3.17c Superposition of amplitude modulation at 4
different times. T - 22. 24. 26. 30. corresponding to the
divergent soliton initial condition.
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rig. 3.17d Superposttion of phase modulation at 4 different
timos. T a 22 24. 26. o0. corrfspondlng to the ampltudemodulation superpositiLon of fig. 3.17c.
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The phase evolution shows 2 uniform regions of phase

corresponding to the 2 pulses with a jump of Xt connecting the

2 regions where the amplitude node occurs. The solitons do

not interact, as evidenced by the amplitude modulation which

is fairly steady and by the lack of phase modulation. The

phase remains uniform in each of the two regions, with slight

constant shifts at successive times and slight curvature at

the edge resulting from linear dispersion from numerical

noise.

Figs. 3.17a and 3.17b show amplitude and phase

modulations superposed at T a 0. 6.3. 12.6. 16.9. Figs. 3.17c

and 3.17d show amplitude and phase modulations superposed at T

a 22. 24. 26. 30.

3.4.7 Summary

The soliton evolution Is characterized by a locally

uniform phase 1 0) with smaL constant shifts in

time. The bound state evolution Is characterized by a locally

uniform phase ( N a 0) at times of minimum and maximum

amplitude modulation. Undulations in phase occur during the

growth and decay of modulation. Radiation is characterized by

a negative curvature in the phase (?jj < 0).

a,

.,% • , • 0 , * -... - . . .4- -0 * •*. .-. -. .
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3.5 INCLUSION OF DISSIPATION

An attempt was made to Include dissipation in the model.

and in particular to examine the effect that dissipation might

have on the phase. The motivation behind this was to account

for both frequency downshifting and dissipation. neither of

which can be modelled using the inviscid NLS equation.

Because the observed downshifting seems to be an irreversible

process, dissipation seemod a strong candidate to account for

it. Also, an examination of the effect of dissipation on

phase did not appear to have been Investigated.

In this section we look at two types of dissipative

terms. One is the usual linear drag normally used to account

for amplitude decay. but with a complex coefficient so that it

can affect the phase. The second type of term Is wavenumber

dependent. A frequency downshift in the wave channel frame of

reference corresponds to a wavenumber shift In the NLS frame

of reference. A dissipation which acted preferentially on

higher wavenumbers could account for a downshLft.

This examination is. admittedly. arbitrary. There are

other processes. such as a selective Instability, which could

cause a downshift. The most we can hope to point out is

whether dissipation could have such an effect, but not to

determine If Lt Is dominant. The conclusion is rather

. ' . ...... . ...... . .
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interesting in that it seems these linear dissipative balances

, have no cumulative effect on the phase. In each case we are

able to transform back to the NLS equation with real

coefficients.

e summarize as follows. ie consider the following form

of the NLS equation:

... A i (3.5P)

Case l.) Consider

(3.52)

We make the transformation

(3.53)

Then (3.51) becomes

where Ot is real. We arrive at the NLS equation for B with

real damping coefficient. The modulation frequency and

wavenumber are defined as

(3.55)

We see that there is a small, constant frequency shift
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from the complex dissipation, but not a mechanism for a

downshift with evolution.

Case 2.) We consider a wavenumber dependent dissipation

We make the transformation

4 4 (3.57)

Then B satisfies

"t6

The modulation frequency and wavenumber are

(3.59)

Again there is a small, constant shift in both wavenumber and
- .

frequency but no time-dependent downshift.

To model the effects of the amplitude damping the

numerical code was modified to the form (3.51) with - 0

and p. purely real. This is equivalent to damping of the

form included in the energy equation (2.10). The real

coefficient, ( , was estimated from the observations as

described in section 2.3.3 and tabulated in Table 2.3

.

- -. • " ,-o. , .. . . . . . . . .,... . . . . ., ° . ° oo .,... ... .. ," " ' " - ,' ' , ' " ° '-" ... . , . ... ... . . . .. ; ; i i , ; ;
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3.6 COMPARISON OF MODEL AND OBSERVATIONS

, In this section we make comparisons between observations

and numerical solutions for 7 experiments of varying steepness

and group length. In each case we show a 3-D plot of the

overall numerical solution of the inviscid equation (3.23) and

the viscous model (3.51). These are only intended to give a
.4

qualitative picture of the evolution since the details are

somewhat obscured.

Ne then compare the amplitude and phase modulations of

the observations at fixed fetches to the numerical solutions

at times corresponding to those fetches. The initial

condition specified from the observation at 6.L meters is

exactly the same for the observations and the numerical model.

*The amplitude and phase modulations were obtained using the

Hilbert transform. They were nondimensionalized by equation

(3.22) using the scaling of the initiaL condition. The

carrier frequency was removed. The time series were centered

based on propagating the initial observation down the channel

at the linear group velocity as described in chp 2 (section

2.3.1). This optimizes comparison with the NLS model which

describes the evolution of the group envelope (carrier

removed) in a frame that propagates at linear group velocity.

The spatial grid was chosen subject to three conditions:

.....................................



-198-

maximize the amount of data used, obtain a reasonable mesh

*ise and have a sufficient distance between the end of the

group and the grid edges so that the first conservation law is

satisfied within reason. The Hilbert transformed data files

are 4096 points long. The initial condition and subsequent

comparisons typically use twice that many points. Therefore,

the beginning and end are padded by the same constant value

that matches to the start of the group. The first and last

eleven points are tapered to zero to exactly match the

boundary conditions. The length of the (nondimensional) time

evolution was chosen to correspond to the length of evolution

in the wave channel. The steepest experiments have, thus, the

longest evolution times.

The phase modulation in this section is defined with the

opposite sign of the phase in chapter 2. as determined from

the Hilbert transform, to be consistent with the definition in

the NLS model. The phase we show here Is also wrapped.

(I.E.. It has lumps of 2 from principal value of the arc

sine and cosine functions).

The comparisons at each fetch are not exact. First,

there is an error introduced in using the linear group

velocity. Secondly, the time chosen is taken to be the

closest grid point to the exact time calculated using linear

group velocity. The phase evolutions of the exact solutions

o °.-.-. . .. . . . . . °..o. .. . . . . . . . . . . . . . ... .
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(section 3.4) show how different the time evolution of the

phase appears for slightly different behavior at the same

times (2-soliton. 5/2-solLton. 3/2-solLton) as well as for one

solution at different times.

What we hope to illustrate here is the overall character

of the phase evolution based on insight gained from the exact

solutions. Ue compare the overall phase behavior between

observations and numerical solutions. From amplitude

modulation we can estimate the time scale on which dissipation

becomes important. The effect of dissipation can also be seen

in the change in character of the phase evolution between

viscous and invLscLd numerical results.

Figures 3.18 and 3.19 show the full Lnviscid and viscous

solutions, respectively, for a group of 10 waves of small wave

steepness ak n .03 (Exp 78). The observations have been

discussed previously in chapter 2. The numerical evolution

was done for -9.0 < < 9.0 and 0 < t < 2.5.

This group evolution is dominated by linear dispersion

(radiation). In figure 3.19 we can clearly see the radiating

components along lines of constant i k , indicative of

linear dispersion. The lengthening of the group, as estimated

by sq. (3.44). is linear in .

e . -. . - o . .. . . ...
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Fig. 3.18 Xnviscid NLS numerical evolution for a wave group of
10 waves. initial steepness ak = .03 (Exp 78). Spatial frame
-9 < X < 9 and time interval 0 < T < 2.5.
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Fig. 3.19 Viscous NLS numerical evolution for a wave group of
* 10 waves. initial steepness ak -. 03 (Exp 78) Spatial frame

* -9 < X < 9 and time interval 0<?T < 2.5.
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in FETCH =137.2 M

FETCH =76.2 M

FETCH =30.5 M

Cr FETCH 1 5.2 M
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nodienioalst a echfechby the initial condition - ..scaling, for the evolution of a group of 10 waves. initial
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FETCH - 137.2 M

FETCH -121.9 M

InFETCH = 106.7 M

In FETCH = 76. M

.;,

FETCH a 35.5 M

'CC

cr.; FETCH - S.2 M

9L.n1 -6.0 411 -. l" 0.on $. III 6.1 9.11 It."N
NONDI' DISTRNCE

Fig. 3.21b Amplitude modulations from the inviscid NLS

solution, at times corresponding to the fetches in 
(a). for

the ovolutloft of a group of 10 vaves. Initial steepness ak "

.03 (axp 76).
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FETCH =121.9 M

FETCH =106.7 M

FETCH =76.2 M

U, FETCH =45.7 M

FETCH *15.2 M

09

Fig. 3.21e.-Amplttude ouain rm h icu L
solution., ttie corresponding to the fetches In (a). for
the evolution of a group of 10 waves, initial steepness ak
.03 (Exp 7)
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Fig. 3.22a Phase modulations from observations, principal
value and normalized by pL. for successive fetchefor the

*evolution of a group of 10 waves. initial steepness cli w .03
(Exp 79).
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Fig. 3.22b Phase modulations from the invLecid NLS solution.
at times corresponding to the fetches In (a). for the
evolution of a group of 10 waves, initial steepness ak - .03
(Exp 79).
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A comparison of the amplitude modulations (figs. 3.21 a.

b. c) shows that the observed group (fig. 3.21a) is strongly

attenuated. The comparison between observations and the

inviscid model (fig. 3.21b) Is quite good at 15.2 and 30.5

meters. (Note that in figs. 3.21 b and c the plots are

labelled by fetch, actually they are the times of the solution

that correspond to those fetches). The effect of the damping

becomes somewhat evident at 45.7 meters. and more markedly in

the subsequent evolution. The inclusion of a constant modulus

of decay (fig. 3.21c). estimated from the observations, gives

remarkable agreement for the entire evolution (137.2 m).

There is no suggestion of soliton behavior in the amplitude

modulation, merely a spreading and decay.

The initial phase p(O) can be seen in fig. 3.20. It is

basically constant ( P 0) within the group. The phase

modulations for the observations (fig. 3.22a) and for both of

the numerical solutions (figs. 3.22b,c) agree very well, in

both general character and, at early fetches (time steps) in

detail. The phase evolves from initial uniformity (6.1 m)

imposed by the wavemaker to a modulated state characteristic

of wave interaction or growing modulation (15.2 m. 30.5 a,

45.7 m). This modulated character typifies the bound state as

it passes between its minimum and maximum modulation. The

final state shows the strong negative curvature ( < 0)

characteristic of radiation. The evolution thus seems to

. - oo . . . .. . - o , • • . . . o . . ° o . .
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consist of an initial forced pulse that disperses linearly.

We start from an imposed uniform phase characteristic of a

soliton or bound state, followed by modulation and radiation.

The next example in for a group of 25 waves of wave

steepness ak a .07 (Exp 77). The full inviscid and frictional

numerical solutions are shown in fig. 3.23 and 3.24. The

numerical evolutions were done for -21.0 < I < 21.0 and 0 <

L < 5. The dimensional initial condition is shown in

fig. 3.25.

The amplitude modulation (figs. 3.26 a.b.c ) for the

observations and the numerical solutions agree quite well

until 106.7 m. Dissipation then becomes important. The

observations (fig. 3.26a) show a steady. single envelope from

106.7 to 137.2 meters. The inviscid solution (fig. 3.26b)

shows a continuation of the modulation into 2 group envelopes

which became apparent in all 3 figures at 76.2 m. It looks as

though the inviscid solution might evolve to a multi-soliton.

as in the theoretical estimate (NH 2.3. Table 2.2).

However, as we see next, the phase indicates this is not so.

The frictional solution (fig. 3.26c) Is not as strongly damped

as the actual observations. It compares bettor than the

inviscid solution, but it shows the same modulation to two

groups, only damped. that we see in the inviscid evolution.

The observations (fig. 3.26a) do not modulate further after
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Fig. 3.23 Inviscid NLS numerical evolution for a wave group of
25 waves. initial steepness ak x.07 (Exp 77). Spatial frame,

-21 <X < 21 and time interval 0 < T <5.
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Fig. 3.24 Viscous NLS numerical evolution for a wave group of
25 waves. initial steepness ak *.07 (Exp 77). Spatial frame
-21 < X < 21 and time Lnterval 0 < T < 5.
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Fig 3.25 Initial condition at 6.1 m~ (E77)
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FETCH =137.2 M

FETCH =76.2 M

aanFETCH =30.5 M

ccI,.:- -1.6-JZ 71 FETCH =15.2 M

I ~NONDIM DISTANCE 1.3 2.2 252

Fig. 3.26a Amplitude modulations from observations.
nondimensionalized at each fetch by the initial condition
scaling, for the evolution of a group of 25 waves. initial
steepness ak *.07 (Exp 773.
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Fig. 3.26b Amp/ltude modulations La-am t~he inviscid NLS

F olti¢on, at times corresponding to the fetches in (a), for :
the evolurton of a group of 25 waves, iLnitial steepness ak *

.0? (Exp 77).
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2.6 -'13. -64.6 go 3.62 7.12 14.12 21.62 28.32 "
NONDIM OJSTRNCE

Fig. 3.26ic Amplitude modulations from. the viscous NLS
solution.. at-timts corresponding to the fetches in (a). for
the evolut Lon ofa& group of 26 waves, initial steepness ak a.
.07 CEXP 771.
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Fig. 3.27a Phase modulations from observations. principal

value and normalized by p, for successive fetches for the

evolution of a group of 25 vaves. initial steepness 
ak a .07

*l (Exp 77).
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Fig. 3.27b Phase modulations from the inviscid NLS solution.
at times corresponding to the fetches in Wa. for the
evolution of a group of 25 waves. initial steepness ak *.07
(Exp 77).
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Fig. 3.27c Phase modulations from the viscous NLS solution. at
times corresponding to the fetches in (a). f or the evolution
of a group of 25 waves, initial steepness ak *.07 (Exp 77).
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76.2 m. At 137.2 m. in fig. 3.26c. the frictional solution

modulation shows a single envelope again. Finally, we note

that because of its weak nonlinearity and long group length.

this group evolution should take (relative to other

experiments) the longest time to reach its asymptotic state.

The phase modulations are shown in Figs. 3.27 a.b.c.

They show remarkable agreement and are different from the

previous phase evolution (figs. 3.22 abc). There is a

slight linear trend in phase within the group ( -I

constant) indicating that not all the carrier frequency was

removed. The overall phase is very flat within the group (

* 0). with quite small undulations. This uniform phase

is indicative of soliton behavior or the bound state at an

extremum (maximum or minimum) of modulation. Linear

dispersion (radiation. < 0) can be seen at the edges of

the group. Most of the discontinuities of 21T are due to

principal values however, the initial Jumps in phase (moving

in from the center of the group at * 0 outwards) are

located at the ends of the group where amplitude minima

(nodes) occur.

r!
The next two examples are for wave groups of the same

wave steepness. ak a .10. and different group lengths: 15

waves (Exp 67) and 25 waves (Exp 86). In order, the number of

predicted solitons for each case was NH 1.6 and 2.3 (Table
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*? 2.21.

For the group of 15 waves. the full solution is shown in

figs. 3.28 and 3.29 for the inviscid and viscous cases.

*respectively. The solution was calculated on the interval

-29.3 < ' < 29.3 and 0 < L < 10. The dimensional initial

- condition is shown in fig. 3.30.

The amplitude modulation is shown in figs. 3.31 a. b. c.

The agreement is good between all three until 76.2 meters.

The agreement of the frictional numerical solution

(fig. 3.31c) with the observations (fig. 3.31a) for the entire

evolution is striking.

The initial condition for the phase Is shown in

fig. 3.30. It is uniform ' l y 01 within the group.

The phase evolution In the observations (fig. 3.32a) is

basically like that of the 1-soliton (uniform) with some small

undulations. As one moves outward in 1 from the packet

center at a 0 we see Linear dispersion ( < 0). The

phase evolution of the frictional solution (fig. 3.32c) agrees

quite well with the observations. We notice that beyond 76.2

meters. the amplitude modulation of the observations and the

*nviscid model (fig. 3.31a,b) differ due to dissipation.

These differences are also evident In the phase modulation

(figs. 3.32amb). The inviscid amplitude modulation
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* fig. 3.26 Inviscid NLS numerical evolution for a wave group of
15 waves. Initial steepness ska .10 (Exp 87). Spatial frame
-29.3 < X < 29.3 and time interval 0 < T < 10.0
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Fig. 3.29 Viscous NLS numerical evolution for a wave group of
15 waves, initial steepness ak .10 (Exp 87). Spatial frame
-29.3 < X < 29.3 and time interval 0 < T < 10.
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Fig. 3.3JL& Amplitude modulations from observations.
nondimensionalized at each fetch by the initial condition
scaling. for the evolution of a group of 15 waves, initial
steepness ak -. 10 (Exp 87).
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L, .tO (Exp 87).
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Fig. 3.3lc Amplitude modulations from the viscous NLS
solution, at times corresponding to the fetches in (al. for
the evolution of a group of 15 waves. initial steepness ak

4.10 (Exp 873.
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Fig. 3.32a Phase modulations from observations, principal
value and normalized by pi. for successive fetches for the

evolution of a group of 15 waves, initial steepness ak " .10
(Exp 87).
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Fig. 3.32b Phase modulations from the Lnviscid NLS solution.
at tLmes-corresponding to the fetches in (a), for the
evolution of a group of 15 vaves. initial steepness ak - .10
(Exp 871.
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Fig. 3.32c Phase modulations from the viscous NLS solution, at
times corresponding to the fetches in (a), for the evolution
of a group of 15 waves, initial steepness ak - .10 (Exp 871.
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(fig. 3.31b) beyond 76.2 meters shows growing modulation of a

steeper, narrower central pulse with amplitude nodes and

sidelobes. It is most like the state of maximum modulation

for the 2, 3/2. or 5/2 soliton of section 3.4. The phase is

also characteristic of these states (bound state plus

radiation). It has a central region of uniform phase

connected on either side by jumps located at the nodes in

amplitude. The form of dissipation chosen can have no direct

effect on the phase, only amplitude. Yet in comparing the

inviscid and viscous model results we see that there is an

indirect effect on the phase. The damping has, in a sense,

changed the 'quantum' of the solution so that a 1-soliton

asymptotic state is reched more quickly than might be

anticipated from the predicted number of solitons N, T : 1.8.

The next example is of a longer group of 25 waves (Exp

88) of the same initial steepness as the previous example (ak

- .10). Figures 3.33 and 3.34 show the full inviscid and

viscous solutions, respectively, from -31.3 < 7 < 31.3 and 0

< < 10. The dimensional initial condition is shown in

figure 3.35.

The amplitude modulations are plotted in fig. 3.36 a, b.

C. The observations (fig. 3.36a) and the frictional numerical

solution (fig. 3.36c) agree very well. Dissipation becomes

important at 76.2 meters, as seen from comparison with the
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Fig. 3.33 Inviscid NLS numerical evolution for a wave group of
25 waves. initial steepness ak - .10 CExp 88). Spatial frame
-31.3 < X < 31.3 and time interval 0 < T < 10.
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Fig. 3.34 Viscous NLS numerical evolution for a wave group of
25 waves. initial steepness ak =.10 (Exp 88). Spatial tram*-3L.3 < X < 31.3 and time interval 0 < T < 10.
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Fig. 3.36a Amplitude modulations from observations.
nondimensionalized at each fetch by the initial condition
scaling, for the evolution of a group of 25 waves. initial

14Ysteepness ak *.10 (Exp 68).
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Fig. 3.36b Amplitud, modulations from the inviscid NLS
solution,. ttie corresponding to the fetch** In (&). for
the evolution of a group of 25 waves, initial steepness ak
.10 (Exp 86).
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Fig. 3.36c Amplitud, modulations from the viscoum NLS

the evolution of a group of 25 waves. initial steepness ali*.10 (Exp 8)
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Fig. 3.37a Phase modulations from observations, principal
value and normalized by pi. for successive fetches for the
evolution of a group of 25 waves. initial steepness ak * .10
(Exp SS).
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rig. 3.37c Phase modulations from the viscous NLS solution. at
times corresponding to the fetches in (a). for the evolution
of a group of 25 waves, Initial steepness ak *.10 (Exp 88).
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inviscid solution (fig. 3.36b).

The phase modulations are shown in fig. 3.37 a, b. c.

The observations (fig. 3.37a) show the phase evolution

characteristic of a soliton. The phase is basically uniform

( •0) with small shifts at successive fetches.

There are small undulations in the phase. The phase of the

frictional NLS solution (fig. 3.37c) agrees well. The initial

jump in phase occurs at the ends of the group where there are

amplitude nodes. At the edges of the group, we see radiation

( < 0). The inviscid phase evolution (fig. 3.37b), as in

the last example, is initially uniform ( = ) like

a soliton or bound state. At 76.2 m, where dissipation is

first noticeable, rather than remain uniform as do the

observations and the frictional numerical solution, the

inviscid solution modulates (fig. 3.37b). The phase is like

that of the bound state (3/2, 2, or 5/2 soliton states) as it

approaches a maximum modulation. The jumps in phase occur

within the group at amplitude minima or nodes.

The last three examples are for the steeper experiments

and longer group lengths with larger estimated number of

solitons. Figures 3.38 and 3.39 show the full inviscid and

viscous numerical solutions for a group of 15 waves of

steepness ak a .15 (Exp 62). They are computed for -31.5 <

< 31.5 and 0 < - < 40. Figure 3.40 shows the initial

1 . . .
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F ig. 3.39 Inviscid NLS numerical evolution for a wave group of
15 waves, initial steepness ak = .15 (Exp 62). Spatial trame

* -31.5 < X < 31.5 and time interval 0 < T < 40.
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Fig. 3.39 Viscous NLS numerical evolution for a wave group of
* 15 waves, initial steepness ak a.15 (Exp 62). Spatial frame

-31.5 < X < 31.5 and time interval 0 < T < 40. _
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Fig 3.40 Initiol condition ot 6.1 mw (E62)
ok IS.1. N =15
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*Fig. 3.41a Amplitude modulations from observations,
*norldimonsionalized at each fetch by the initial condition
* scaling, f or the evolution of a group of 15 waves. initiala steepness ak n .1.5 (Exp 62).
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*Fig. 3'.41b Amplitude modulations from the Inviecid NLS
solution, at times corresponding to the fetches in W,) for
the evolution of a group of 15 waves. Initial steepness alt
_15 (Exp 62).



K -247-

FETCH =137.2 M

FETCH =106.7 M

FETCH =76.2 M

FETCH =45.7 M

* FETCH =30.5 M

00

"Li 5 FETCH 1. 15-15 -. 3 0471.7. 2 304K NONO~IM OISTRA:CE

Fig. 3.41c Amplitude modulations from the viscous NLS
solution, at times corresponding to the fetches in (&I, for
the evolution of a group of 15 waves. Initial steepness ak
.15 (Exp 62).
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Pig. 3.42a Phase modulations from observations, principal
value and normalized by pi. for successive fetches for the
evolution of a group of 15 vaves, Initial steepness ak a .15
(Exp 62).
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rig. 3.42b Phase modulations from the inviscid NLS solution.
at times corresponding to the fetches Ln (&I for the

*evolution of a group of 15 vaves. initial steepness ak .15
(Exp 62).
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Fig. 3.42c-Phase modulations from the viscous NLS solution. at

times corresponding to the fetches in (a), for the evolution
of a group of 15 waves, initial steepness ak - .15 (Exp 62).
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condition. The estimated number of solitons is 2.9 (Table

2.2).

The amplitude modulations are shown in figs. 3.41 a. b.

c. The amplitude modulation is observed to be strongly

attenuated. (fig. 3.41a). (Also, it is normalized by the

maximum upstream amplitude). The frictional ILS (fig. 3.41c)

agrees well until 106.7 m. It is more strongly damped than

the observations, as we will see from the phase modulation as

well.

The observed phase modulation (figs. 3.42a) shows a

central region of solLton-like behavior that is uniform ( =

0). with undulations. At 30.5 m and 45.7 m this central

region is broken up by phase jumps at local amplitude minima.

The amplitude modulation (fig. 3.41a) shows a growing

modulation at these first three fetches. From 76.2 m on.

there is a small central region of phase that remains flat.

and a strong background of radiation C < 0). This is not

a bound state, it appears to have been strongly affected by

dissipation so that there is perhaps a central soliton in a

background of linear dispersion. The numerical inviscid

solution (fig. 3.42b) indicates a bound state type character.

There is a growing modulation (figs. 3.41b and 3.42b). a

slight demodulation at 76.2 m where the phase becomes more

uniform, follwed by growing modulation. The phase modulation
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(fig. 3.42b) contains jumps within the group. The frictional

solution (fig. 3.41c). from amplitude modulation, is more

strongly damped than the observations. The phase modulation

(fig. 3.42c) suggests that it is totally dominated by

radiation.

The next example is for a group of 15 waves of steepness

ak - .16 (Exp 22). Figures 3.43 and 3.44 show the full

numerical solutions. Figure 3.45 shows the dimensional

initial condition. The evolution was done for -33.5 < <

33.5 and 0 < t < 45.

The amplitude modulations are shown in figs. 3.46 a. b.

C. The observations (fig. 3.46a) and the frictional NLS

solution (fig. 3.46c) agree fairly well. Dissipation becomes

important at 76.2 meters.

The phase modulations are shown in figs. 3.47 a.b.c. As

in the previous case for the same group length and slightly

smaller steepness. there appears to be more coherence in the

observed phase modulation (fig. 3.47a. than linear dispersion

would give. The central region of phase is uniform with jumps

occurring within the group where local amplitude mLnLma occur

(45.7 m, 76.2 m). The bound state type of modulation, with

growing and decaying modulation, is observed in the InvLecid

model solution (fig. 3.47b) but not in the observations. The
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rig. 3.43 Inviscid NLS numerical evolution f or a wave group of
15 waves, initial steepness ak = .16 (Exp 22). Spatial frame
-33.5 < X < 33.5 and time interval 0 < T < 45. -0
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Fig. 3.44 Viscous NLS numerical evolution for a wave group of
L5 waves, initial steepness ak a .16 (Exp 22). Spatial frame
-33.5 < X < 33.5 and time interval 0 < T < 45.
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Fig. 3.46a Amplitude modulations from observations.
nondimensionalized at each fetch by the initial condition
scaling, for the evolution of a group of 15 waves, initial
steepness ak = .16 (Exp 22).
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F ig. 3.46b Amplitude modulations from the Irwiscid NLS
solution, at t-imes corresponding to the fetches in (a). for
the *volution of a group of 15 waves, initial steepness ak
.16 (Exp 22).
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Fig. 3.47a ?has* modulations from observations, principal
value and normalized by pi. for successive fetches for the
evolution of a group of 15 waves. initial steepness ak -. 16

* (Exp 22).
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Fig. 3.47b Phase modulations from the inviscid NLS solution,
at times corresponding to the fetches in (a). for the
evolution of a group of 15 waves, initial steepness ak .16
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Fig. 3.47c Phase modulations from the viscous NLS solution. at

times corresponding to the fetches in (a). f or the evolution

of a group of 15 waves, initial steepness ak =.16 (Exp 22).
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frictional NLS solution (fig. 3.47c) is dominated by linear

dispersion.

The last example is that of the longest (25 waves)

steepest wave group, ak .16 (Exp 23). Figures 3.48 and 3.49

show the full numerical solutions for -29.1 < 'j < 29.1 and 0

< V < 40. Figure 3.50 shows the initial condition.

The amplitude modulation can be seen in figs. 3.50 a,b.c.

The observations (fig. 3.50a) and the frictional NLS solution

(fig. 3.50c) show reasonable agreement.

The phase modulations are shown in figs. 3.52 a.b.c. In

all three cases the behavior Is characteristic of the bound

state. Note in fig. 3.52a the phase jumps occuring near

amplitude minima' 30.5 m. 45.7. 121.9. The frictional phase

modulation (fig. 3.52c) also suggests bound state type

behavior. Although the bound state phase modulation can not

really be distinguished here from bound state plus radiation

or soliton plus radiation, It is distinct from both pure

radiation and simple solLton behavior. What we observe is

charateristic of an ongoing Interaction of some kind which in

amplitude is evidenced by growing and decaying modulation.

The phase further supports that it is indeed an interaction

and not Linear dispersion by Its relative flatness (Nj - 0)

within the group with jumps connecting the regions that occur
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Fig. 3.48 Inviocid NLS numerical evolution for a wave group of
-1 25 waves. initial steepness ak a .16 (Exp 23). Spatial frame

-29.1 < X < 29.1 and time interval 0 < T < 40.
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Fig. 3.49 Viscous NLS numerical evolution for a wave group of
25 waves, Initial steepness ak *.16 (ERmp 23). Spatial frame

-29.1 < X < 29.1 and time Interval 0 < T < 40. 0
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F'ig. 3.51a Amplitude modulations from observations.
nondimensionaliaed at each fetch by the initial condition
scaling. for the evolution of a group of 25 waves, initial
steepness ak L .6 (Exp 23).
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Fig. 3.51b Amplitude modulations from the inviscid NLS
solution. at times corresponding to the fetches in (a). for
the evolution of a group of 25 waves. Initial steepness ak
.16 (Exp 23).
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Fig. 3.52a Phase modulations from observations, principal
value and normalized by pi. f or successive fetches for the
evolution of a group of 25 waves, initial steepness ak a .16
(F-xp 23).
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Fig. 3.52b Phase modulations from the inviscid NLS solution.
at times corresponding to the fetches in (a). for the

evolution of a group of 25 waves. initial steepness ak -. 16
(Exp 23).
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Fig. 3.52c Phase modulations from the viscous NLS so..ution. at
times corresponding to the fetches in (a). for the evolution
of a group of 25 waves. initial steepness ak a .16 (Exp 23).
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between locations of amplitude minima. The phase also seems

distinguishable from that of divergent solitons in that the

jumps change in time, generally corresponding to locations of

nodes, rather than staying fixed in relative position within

the group.

3.7 DISCUSSION AND SUMMARY

We have made comparisons between observations and

numerical solutions (from real data initial conditions) of

narrow-banded wave group evolution. From these comparisons.

using the Long-time behavior of exact asymptotic model

solutions as a guide, we believe that we can distinguish

.etween radiation (linear dispersion) and soliton-like

behavior based on characteristics of the phase modulation.

This does not appear to have been examined before in

observations, primarily due to lack of a method for obtaining

a time series of phase modulation from measurements of surface

displacement. From amplitude modulation alone, it is

difficult to tell whether the wave group development is a

forced superposition of linear components which disperse or a

truly nonlinear phenomenon. We suggest that. at least for

wave groups with a well defined carrier frequency, the phase

modulation may give a clearer indication of the type of wave

interaction that takes place.
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The only published study of the evolution of mechanically

generated groups that looks at phase is that of Feir (19671.

We briefly describe his results and compare them to our wave

group evolutions. He generated variable amplitude, constant

frequency pulses. The amplitude (wavemaker stroke) was varied

smoothly from zero to some maximum amplitude back to zero.

Wave development was observed at 2 fetches: 4 feet and 28

feet. (Our initial condition is specified from an observation

at 20 feetj the final observation is at 450 feet). Frequency

was determined from zero crossings in amplitude. This yields

frequency averaged over one half wave period.

Qualitatively, our results are consistent with this

relatively short term observation. He shows the frequency

modulation for 2 wave steepnesses, ak a .025 and ak = .08.

These correspond best to the first two cases discussed in

section 3.6 corresponding to radiation and soliton,

respectively. However, we really can not determine the

long-time behavior from Feir's observations. The initial

frequency within the group in all cases (his and ours) is

uniform, imposed at the wavemaker. For the smaller steepness,

oFeir finds that the frequency within the group Is still

uniform at 28 feet. Linear dispersion is evident at the group

edges. Jumps in frequency occur at the edges corresponding to

locations of amplitude minima. In the case of the higher

steepness, the frequency at 28 feet has what Fair refers to as
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a 'kink' or ripple within the group. It is like the

undulations we see in cases of overall uniform phase. Again

linear dispersion is evident at the edges of the group with

jumps in frequency at amplitude nodes. The amplitude

modulation also indicates that the group is in an early stage

of evolution) the group has spread but is still a coherent

pulse with amplitude varying smoothly from zero to a central

maximum back to zero.

Feir shows the amplitude modulation of some steeper

experiments which are similar to amplitude modulations that we

observe (growing modulation of a single envelope to two) but

does not show the frequency modulation. He remarks that the

frequency modulation varies erratically, we would expect

phase jumps within the group to accompany the growing

amplitude modulation. He also remarks on a trend for the

frequency of leading groups to be lower than that of trailing

groups. The results of the frequency downshifting in chapter

2 al-3 indicated that although the peak frequncy downshifts

with evolution, not all the groups are of lower frequency.

Rather, the modulation sorts itself into a succession of

groups of increasing frequency.

We cannot resolve very clearly, from the phase

modulations of the observations, between a simple soliton

state and the bound state (both in a background of radiation).
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The type of radiation present in the observations makes the

phase much noisier than that which we specified in analytic

initial conditions (section 3.4). In one case, that of the

steepest and longest initial pulse, the phase was more

suggestive of the bound state than that of simple soliton. In

all other cases (including some not discussed) where linear

dispersion did not dominate the long-time evolution, the phase

modulation seemed to indicate soliton plus radiation type

behavior. Perhaps due to dissipation one needs longer,

steeper initial profiles than predicted by inviscid theory to

achieve a bound state. The effect of dissipation is seen to

be significant, and in the parameter range investigated acts

to lower the 'quantum' or predicted number of solitons that

one would estimate from the initial condition.

Due to dissipation, it seems that the bound state or

soliton is not manifested by the recurrence or steadiness (in

the soliton casel of the initial condition but is manifested

by the coherence of the wave group. The phase modulation

indicates that the waves remain together and interact in the

long-time evolution in contrast to predictions of the linear

theory for thermalization of the group. The results of Yuen

and Lake [19753 support this interpretation. Although they

did not see recurrence of the initial condition, the observed

groups did not separate. It would seem that the primary

manifestation of the bound state is in this long-time
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coherence.

We find that the frictional NLS equation models the

long-time evolution extremely well. It is perhaps surprising

in view of the the weak nonlinearity of the theory and the

crudenesss of the dissipation term. Although the form of the

dissipation does not directly affect the phase, we find there

is an indirect effect on the phase in the long-time evolution

by a change of the 'quantum'.

The model cannot predict a frequency downshift such as is

observed. Although the downshift is small and only occurs for

the steeper wave groups, it is an important, consistent and

nonconservative feature of the long-time evolution. It may be

due to some higher order effect or more complicated

dissipation than was considered.
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CHAPTER 4

OCEANIC OBSERVATIONS OF INTERNAL WAVE GROUP DEVELOPMENT

4.1 INTRODUCTION

A field study was undertaken in September 1979 to observe

the generation of high frequency internal wave packets in

Massachusetts Bay. The propagation of these waves has been

previously observed during late summer and early fall when

there is a strong seasonal stratification. (The bay is nearly

isothermal in winter). They are thought to form from the

interaction of the tide with Stellwagen Bank, a local

topographic feature (Fig. 4.1). The packet propagation was

first looked at by Halpern (1971a3 and more recently by Haury.

Briscoe and Orr 119793.

There have been relatively few oceanic studies of wave

generation from tidal interaction with topography. Some

notable exceptions relevant to Nassac:usetts Bay are the

extensive field study by Farmer and Smith (1980a! in Knight

.i 6



-2 78-

0

0

0
0 W

C0 fn

0

00,.
166.

00

Fig. 4.1 CD shows the steaming track f or the acoustic
transect. and B is the Location of the buoy from the present
field experiment. Sites of measurements made in previous
studies are also indicated. EP marks an XBT survey by HBO
(1979). T denotes the Location of Halpern's (1971a~bI
observations. The solid triangles show the position of Orr's
acoustic observations of the packet [HBO. 19791. (Map after
HBO, L970).



Inlet. the observations by Osborne and Burch (19801 in the

Andaman Sea and the study done by Gargett (19761 in the Strait

of Georgia. These studies show the asymmetry of the

topography and the structure of the statification to be

crucial to the types of response that are observed. Although

there are numerous theoretical and laboratory studies on this

topic, they generally employ a simple stratification and &n

idealized ( smooth and symmetric I topography. Hence the use

of these studies to interpret a given oceanic situation is

uncertain unless applied in conjunction with actual

observations. In particular two theoretical and labo:atory

studies, the work of Lee and Beardsley [19741 and that of

-axworthy (19791, offered two different generation mechanisms

to explain Halpern's wave packet observations. These together

with the above field studies were the primary motivation for

the present experiment. A brief review of some of the

previous work will be included in the discussion.

The goal of the present experiment was to observe the

tide-sill interaction over time to determine how the internal

waves form. Haury. Briscoe and Orr (hereafter referred to as

HBO). from their observations, saw some evidence in support of

the lee wave generation mechanism proposed by Farmer and Smith
and by Maxworthy for creation of the high frequency packets.
Farmer and Smith disagree with Maxworthy on the details of the

packet formation. Farmer and Smith see the packet formed as a

S* -. --- --.I.- - -- . - - -
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nonlinear lee wavetrain (quasi-steady). Haxworthy sees the

wavetrain formed from the disintegration of the front of a

single depression or massive lee wave (unsteady). HBO did not

distinguish between the two explanations ( the Farmer and

Smith paper was still in preparation at the timel. However,

HBO's conclusion was of a qualitative nature based on only a

few observations of the apparent generation. They did not

observe the time development.

In the present study. a ten kilometer track perpendicular

to the bank axis and centered over the crest was monitored for

one tidal cycle. A commercially available Raytheon fathometer

was used as a remote sensor of isopycnal motion. Seven

kilometers is both the full obstacle width and the length of

the local tidal excursion (Halpern, 1971b). Figure 4.1 shows

the location of the steaming track (CD) and the mooring site

(B) of the present study as well as the position of an XBT

survey by HBO (EF) and the site of Halpern's Station T. To

accompany the interpretation of the acoustic record, a time

series of Froude numbers was calculated from velocity and CTD

measurements made on the crest of the bank.

The most striking aspect of our observations is the

asymmetry of the response. It is perhaps not surprising,

especially in view of previous studies, since the shape of the

bank shows marked asymmetry and represents a large obstacle to
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the flow. On ebb tide (flow directed toward the Gulf of

Maine), a large isopycnal depression or massive lee wave is

formed behind the sill (over the eastern slope). The flow

sees a dramatic decrease in depth from 80 meters in the Bay to

30 meters on the crest over a distance of one half to one

kilometer. The horizontal scale of the depression is 5

kilometers. the same order as that of the more gently sloping

eastern side of the sill. This depression remains stationary

as the tide slackens. The observed Froude number (Fr) on the

sill crest is almost always supercritical (Fr > 1).

SupercriticaI flow over the crest is also indicated by the

lifting of the isotherms over the bank, in analogy with

layered hydraulic flows (Fig. 4.2B). The Froude number

estimated away from the crest using continuity is always

subcritical (Fr < 1). There is a short period of

subcriticality on the crest when the tide turns. It is during

this period of subcriticality that the large depression formed

in the lee of the bank is hypothesized to give rise to a train

of large amplitude high frequency internal waves. They

propagate westward. The speed of these waves is estimated

from an internal KdV dispersion relation (Benjamin. 1966).

The estimate gives consistent results with an extrapolated

packet arrival time at point C (Fig. 4.1). Support for the

above interpretation of the flow response on ebb tide comes

from acoustic images, Froude numbers, an XBT survey, and an

observation of the packet at point C.

'1:
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The behavior on the flood phase of the tide (flow

directed into the Bay) is quite different. The flood tide

sets up a much smaller scale lee wave very quickly. Its

length is about one kilometer, the same as that of the depth

transition on the leeward side of the sill. To the flood

tide, the depth transition over the sill should appear much

more gradual. As the tide slackens and turns, a train of 4-5

lee waves of the same scale as the first stationary wave

appear to form and advance into the decreasing flow. There is

less observational support for the interpretation of the flow

response on flood tide than there was on ebb. Evidence here

comes just from the acoustic images and the Froud. numbers.

Although it has been conjectured that the packets might not be

formed on both phases of the tide due to the asymmetry, no

previous attempt has ever succeeded in observing them

propagating into the Gulf of Maine. and we did not try to

observe them further east in this study. It would seem that

waves are generated on flood tide. and that they look quite

different from those generated on ebb.

A detailed description of the measurements is given in

the next section. This is followed by an analysis of the data

and a discussion of the results. Some pertinent previous work

is also reviewed in the discussion.
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4.2 MEASUREMENTS

The velocity on the crest of the bank was measured using

three Endeco Type 105 ducted impellor current meters. These

current meters are specifically designed for shallow water

applications. They were attached to the mooring cable by a

1.5 meter tether and were thus allowed to orient freely to the

flow. They recorded speed and direction at thirty minute

intervals for a period of forty six hours throughout the

experiment. A slack mooring was used with a 2.5:1 scope. The

water depth on the crest was 28 meters, and the current meters

were set at depths of 6. 13 and 19.5 meters.

Density was calculated from measurements made on the

crest of the bank in the vicinity of the mooring with a

Hydrolab hand lowered CTD. Salinity measurements show the Bay

is nearly isohalins, and the stratification is primarily due

to seasonal heating. Temperature was also measured using

XBTs. A dense XBT section was made over the bank as the tide

turned from ebb to flood IFig. 4.2B).

An acoustic time series was madi using a 41 kHz wide beam

transducer Raytheon fathometer. The acoastic record was made

while steaming a 10 kilometer track perpendicular to the bank

axis. This track was steamed continuously for a tidal cycle,

navigation was by Loran-C. We attempted to duplicate the
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track on each successive pass with the largest deviation

between the tracks being of order 600 m. The use of a

fathometer as a remote sensing tool to observe internal wave

motion is not new. Among others it has been used by Farmer

and Smith 11980a,b] in Knight Inlet and by HBO (1979J in

Massachusetts Bay. The source of acoustic reflection is

uncertain, although in our range it is probably from

biological scatterers which act as passive tracers of the

fluid motion (Orr, 19801. We can show from contouring

temperature measurements taken from a densely spaced XBT

section on the same scale as the acoustic record that the

acoustic scattering layer is coherent with the thermocline

(Figs. 4.2A and 4.28). Although the images produced with the

Raytheon are not as clear as those of Farmer and Smith due to

a more diffuse scattering layer, they do show the large scale

isopycnal motion. In addition, they form a continuous time

series that we can use in interpreting our physical

measurements. In all of the Raytheon record made while

steaming, the chart paper speed limits our horizontal

resolution to 200 meters.

In Figure 4.2 the distance scale is not uniform due t-

slight irregularity in steaming. The contouring was do-.,

correspond exactly to the acoustic record. However t ,o

temperature contoured on a uniform distance scale I.

basically the same (the irregularity is sligt'
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Fig. 4.2A Raytheon acoustic imago made while steaming at
approximately 9 knots eastward across the bank as the ebb tide
slackened. Tho flow- is from l.eft to right and is close to
zero. The image shows a large scale near-surface
low-scate-tring region coherent with the dopression of the
thermocline soon in 20.
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Station number (Raytheon)
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Fig. 4.28 Temperatures from expanded scale XBT traces hand
read and contoured on the same scale as the acoustic image of
2A. Th. numbers at the top of the figures indicate stations
where XBT casts were mad.
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corresponds to the appearance of a large depression or massive

lee wave formed on ebb tide over the eastern side of

Stellwagen. Its horizontal scale is five kilometers. In the

acoustics the isotherm depression appears as a clear

low-scattering region, probably from surface mixed-layer water

moving down. The time developmen. 'f the lee wave can be

traced in the acoustic record by examining the evolution of

this low-scattering region. In this manner, the acoustic

record provided us with a continuous real-time picture of the

flow.

4.3 ANALYSIS AND RESULTS

An extensive field study of topographic generation of

internal waves by a tidal flow has been carried out by Farmer

and Smith 11980a,bi In Knight Inlet. British Columbia. The

local topography and stratification are considerably different

from that of Massachusetts Bay. The topography is also large

amplitude, but the mean depth of the water is much greater

(500 m in K.I. opposed to 90 m in M.S.) The stratification is

more nearly two layer (fjord-type fresh layer over salt).

Farmer and Smith classified their flow response based on an

internal Froude number which they defined as the ratio of the

maximum tidal velocity to modal Internal wave phase speeds

where the modal speeds were calculated from the observed

density profiles. This definition Is equivalent to
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Maxworthy's except that Maxworthy used directly measured phase

speeds instead of calculated modes. Farmer and Smith's Froude

number differs from the usual definition (which uses density

structure over total depth) in that only density structure to

sill depth was used. The reason for their definition was the

feeling that the sill was controlling the flow, and hence only

stratification down to sill depth would be important in

determining the response. Both the field study of Farmer and

Smith and the laboratory study of Maxworthy categorized their

results based on a Froude number dependence.

In the present study. a time series of Froude numbers was

calculated to accompany the acoustic time series. There Is an

acoustic image on the crest of the bank every half hour as

well as a current measurement. The Froude number calculation

is the same as that stated above:

Fr.(t) V U(t) / CL  (4.3.1)

U is the mean value of the flow component perpendicular

to the bank axis averaged over the three depths. The axis of

the bank is 38 degrees west of north. The flow was resolved

into components along and perpendicular to the bank axis. The

observed velocity was fairly depth Independent. The phase

speeds were computed from CTD observations of density on the

sill crest using a fourth order Runge-Kutta shooting method.

The phase speeds for the first three modes were found to be 23
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cm/sec. 10.4 cm/sec and 7.1 cm/sec, respectively. Figure 4.3

N, ts a plot of the Brunt-Vaisala frequency and the first three

vertical eigenmodes.

Table 4.1 lists the calculated Froude numbers. An

asterisk is used to denote all values greater than 1

(supercritical). The Froude numbers for the second and third

modes were almost always supercritical, while the Froude

number for the lowest mode was supercritcal at times of

maximum ebb tide. Maximum flood tide occurred from 2000 to

2130 hours in Table 4.1 and the first mode Froude numbers were

just subcritical.

HBO estimate a Froude number from their measurements and

from those of Halpern (1971a) taken at a site 9 km west of the
Er rt

crest (Station T. Fig. 4.1). They find Fr *Nj - 0.33. By

mass conservation, this is consistent with our measurements on

the crest. Again using conservation of mass. we extrapolate

to 5 km east of the crest and estimate a value of the Froude-'
number equal to 0.57. These results indicate subcritical flow

on either side of the bank.

Noe now use the time series of Froude numbers to Interpret

the acoustic Images. Any Proud* number reference is to the

first mode value unless otherwise stated. The evolution was

* noted by following the development of the near-surface
.'

"4*
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Table 4.1 Time series ot Froude numbers

TIME(1/2 HR) MODE 1 FROUDE NO. MODE 2 FROUCE N0. 301 3 FROUDE NO.

9/7/79 1300 0.80 1.76 0 2.58

1330 1.08 * 2.40 0 3.51

4 1400 1.33 * 2.94 * 4.31 *

1430 1.56 * 3.46 5.06 0

15C 1.72 * 3.81 0 5.59
1530 1.86 * 4.12 6.DA *

1600 1.73 * 3.83 * 5.61

1630 1.83 * 4.04 5.92 *

1700 1.62 * 3.58 * 5.24 *

1730 1.46 * 3.23 0 4.73 0

1800 0.80 1.77 0 2.59 *

1830 0.56 1.24 * 1.82 0

1900 0.06 0.12 0.18

1930 0.60 1.33 * 1.94 0

2000 0.99 2.20 * 3.22 0

2030 0.97 2.15 * 3.15 0

2100 0.88 1.96 * 2.87 0

2130 0.87 1.92 * 2.81 0

2200 0.56 1.24 0 1.81

2230 0.40 0.88 1.28 0

2300 0.35 0.78 1.14 *

2330 0.27 0.60 0.88

9/8/79 2000 0.15 0.33 0.48

0030 0.20 0.45 0.66
0100 0.19 0.43 0.62

0130 0.50 1.11 0 1.62 0

0200 0.82 1.81 0 2.64

0230 1.04 * 2.31 0 3.39 *
0300 1.14 * 2.52 0 3.70 '

0330 1.35 * 2.99 * 4.38 
0400 1.32 * 2.91 0 4.26 0
0430 1.55 * 3.42 5.01 *
0500 1.42 * 3.14 4.60 *

0530 1.00 * 2.22 0 3.25 *

0600 ' 1.01 * 2.24 * 3.29 0

0630 0.99 2.20 0 3.22 *

0700 0.54 1.18 0 1.73 0

0730 0.26 0.58 0.85

1
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low-scattering region in the acoustic record. As stated

earlier. Figure 4.23 shows that this feature is associated

with a large scale isothermal depression. For purposes of

this discussion, we will refer to the depression as a lee

wave.

Figure 4.4 Is a schematic of the development of two

related features in the acoustic record. The first is the

clear near-surface feature that we identify with a lee wave.

This clear region Is outlined from the acoustic record, and

I its development with time in relation to the sill crest and a

second feature is followed. The second feature is also a

clear area in the acoustic record which occurs on the bottom.

It is conjectured to be well mixed water of a different type

than the ambient bottom water and thus has different

scattering properties. Its movement seems definitely related

to the tidal cycle and lee wave formation. It may indicate a

pattern in flow separation similar to that observed in Knight

Inlet. In each sequence of the schematic, the bank appears

slightly differently b3vause it was drawn to correspond to a

particular acoustic Image. As mentioned previously, the

steaming track and speed of the ship were slightly irregular.

The form of presentation was chosen to mirror the Information

in the actual image.

Figure 4.5 relates the schematic of Figure 4.4 to the
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Froud. number calculations from Table 4.1. It shows th@

* magnitude of the mean velocity component across the bank and

* ,the magnitude of the first mode internal wave phase speed.

Where the current speed exceeds the phase speed, the Froude

number is supercritical. The times corresponding to elements

of the schematic of Figure 4.4 have been marked to indicate

where each element occurs in the tidal cycle and to indicate

the criticality at these times.

We observed that the lee wave on the eastern side of

Stellwagen was already present when the acoustic transect

began (Figs. 4.4A and 4.61. It seemed to be a single large

depression. This is consistent with Maxworthy's large

depression and with Farmer and Smith's single massive lee wave

or jump. If shorter lee waves were present, they could have

been resolved (although not shorter than 200 m) as will be

seen on the flood tide response. In the Proude number

sequence (Table 4.1, Fig. 4.5) this corresponded to the 6

hour time interval 1300 to 1900 hours when the mode I Frouds

number on the crest of the bank was almost always

supercritical (Figs. 4.4A to 4.4D). As the tide slackened.

the Froude numbers became subcritical (flow speed less than

mode I phase speed). The lee wave remained stationary but

became shorter and shallower. and finally It was no longer

discernable (Figs. 4.4E.4.4P.4.7). This occurred rather

quickly, from 1900 to 2030 hours. The time period corresponds
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Fig. 4.6 Raytheon acoustic image corresponding to Figure 4.4A.
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Fig. 4.7 Raytheon acoustic image corresponding to Figure 4.4E.
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Fig. 4.8 Raytheon acoustic imago corresponding to Figure 4.4G.
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Fig. 4.9 Raytheon acoustic image correspodintg to Figure 4.4H.
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to subcritical flow over the crest before the tide starts to

approach maximum flood.

The lee wave was not seen to propagate upstream (i.e.,

the low-scattering region was not seen to move upstream over

the western side of the bank). We hypothesize that the lee

wave disintegrates into a train of solitary waves over the

crest of the bank as observed in the laboratory experiments of

Haxworthy (1979). This hypothesis is based on the following

observations and wave speed calculations.

The first question to answer is whether the depression

could propagate quickly enough that it was missed in the

acoustic transect. To make a speed estimate, we use the

distance the feature must propagate to be beyond the steaming

track ( from points S to C. Fig. 4.1) and the maximum amount

of time that the feature could have to propagate without being

observed ( assumes the ship is steaming east at the time the

depression starts moving westward). We find that to be missed

the feature must move westward at a speed of -139 cm/sec.

This speed ostimate does not take into account the advective

speed of the flow which ranged from 0 cm/sec at 1900 hours to

-22 cm/sec (westward) at 2030 hours. The advective speed is

taken from the mean velocity over the crest and thus

represents an upper bound on the flow In the Day. The time

interval 1900-2030 hours is examined since this was when the

-.............
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feature disappeared over the eastern side of the bank.

We can compare this speed with two estimates of phase

speed. The estimates were calculated using the relation given

by Benjamin (19661 for finite amplitude internal waves in a

2-layer fluid. The layer depths, wave amplitude and density

difference were taken from measurements made In the deeper

water of the Bay immediately west of the sill crest. The

speed of an Infiniteemal long wave, the fastest linear wave,

is calculated to be 45 cm/sec. The nonlinear-dispersive (KdV)

phase speed is 58 cm/sec. Despite the large possibility for

error in the estimates and including the advective speed of

the flow, It seems unlikely that the propagation of the

massive lee wave would have gone undetected.

We can check the consistency of the KdV speed with

another estimate of the packet speed based on an observation

of the high frequency wave group at point C (Fig. 4.1).

First we briefly describe the observation. The waves were

observed at point C using a thermistor suspended from the side

of a freely drifting ship. The onset of the wave packet was

marked by an abrupt rise In temperature recorded by the

therm stor coincident with a downward plunge of the scattering

layer In the acoustic record (Fig. 4.10) and the advance of a

pattern of surface slicks oriented parallel to the bank axis.

The period of the waves was approximately 10 minutes. The

rl. io •o . " :.: :K-..:.- . . ;:. u . . i. <.... I .
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Fig. 4.10 Raytheon acoustic image of high frequency internal
wave packet observed while ship was freely drifting 5 km west
of Steliwagen at point C.
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aotivation for this observation was twofold. Prior

observations of the propagation of the high frequency packet

by both Halpern 11971a) and HBO (19791 were made in the

vicinity of Station T (Fig. 4.1). We wanted to confirm that

waves did indeed propagate westward from our steaming track

(CD, Fig. 4.1) vhich was north of Station T. Secondly, this

observation fixed a time and position of the packet which we

will now use in determining the timing of the wave generation.

It should be mentioned that the continuous acoustic transect

over a complete tidal cycle was scheduled to begin immediately

after this packet observation but was delayed due to passage

of a storm. The storm mixed the surface layers prior to this

the seasonal stratification had extended to the surface (Fig.

4.3). The observed waves appear to be mode one (seasonal

thermocline moves up and down in phase) and hence should not

be very affected by this surface mixed layer.

From the observed packet arrival we can project

subsequent arrivals since the waves are tidally generated. He

estimate a packet speed taken as the ratio of distance to time

defined as follows. The distance is from the sill crest to

point C. The time Interval is from when the Froude number

first became subcritical on the crest until the projected

packet arrival at C. With error bars of (+/-) a half hour we

find lower and upper estimates of the packet speed to be 44

and 62 cm/sec, respectively. This estimate disregards the



-305-

mean flow advection. We note that if the packet starts to

propagate much earlier than estimated, the mean flow is large

and against the waves (mean flow is of order 40 cm/sec east).

If the packet starts to propagate later than estimated, the

mean flow is directed westward and will advect the packet.

Hence, the phase speed probably falls within the calculated

bounds. These bounds are consistent with both the linear long

wave and KdV phase speed estimates.

From the above observations and estimates, we conclude

that the large scale depression did not propagate westward as

a massive lee wave. Rather, at the time it disappears from

our acoustic record, It disintegrates into a train of large

amplitude high frequency internal waves which we can no longer

resolve in our record, but whose speed we can estimate from

both theory and observations. These estimates show that the

observed packet speed is consistent with KdV theory. Some

additional support for this immediate breakup of the front of

the massive lee wave Into large amplitude high frequency waves

comes from two acoustic observations taken hy Orr (personal

communication). The positions of the observations are shown

in Figure 4.1 and are located on the crest of the bank. They

were made by a 200 kHz acoustic backscatterer with much higher

resolution than the Raytheon. Orr observed the packet at

these locations which correspond to our proposed site of wave

packet generation (on the crest). However, whether the timing

--------------------
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of his observations Is consistent with the tide has not been

verified.

Finally, we note that it Is impossible to identify

uniquely the feature that remained stationary behind the sill.

Perhaps a succession of lee waves, each with a correspondingly

slower velocity, was generated in the lee of the bank as the

flow speed decreased. The front of each of these lee waves

may have disintegrated into a train of finite amplitude high

frequency waves.

Between 2100 and 2130 hours we saw the rapid setup of 1-2

lee waves on the western side of Stellwagen formed by the

flood tide (Figs. 4.4G.4.81. They were about one fifth the

scale (half to one kilometer) of the ebb tide Ie wave. There

was no XBT section to compare temperature with this feature.

By 2200 hours a train of 4-5 lee waves appeared to be

propagating over the crest into the decreasing flow (Figs.

4.4H.4.9). This In consistent with the Froude number series

which shows the flow over the crest to be subcritical. It was

quite different from the ebb tide lee wave in both scale and

duration. The flood tide lee waves appeared over the western

side of the bank for less than 2 hours as opposed to 6 hours

on ebb.

The second feature that was followed in the acoustics Is

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-. . . . . . . ..-, -',-. . 7.7- -, --. -- - . - . --;- .;, . --. . :- :. . .. .'
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the clear region on the bottom. As the tide approached

maximum ebb, this feature was seen to move off the crest of

the bank to the east (Figs. 4.4A.4.4B). It continued to move

eastward even as the tide slackened (Figs. 4.4C.4.4D). As

the ebb tide lee wave became shorter and shallower, the fluid

moved back over the crest (Figs. 4.4E,4.4F). Eventually, it

seemed to cascade over the sill (Figs. 4.4G.4.4H). This may

indicate that the flow Is not blocked. Additional remarks

regarding the relation of this feature to the flow separation

observed by Farmer and Smith will be made in the discussion.

4.4 DISCUSSION

Halpern's field observations of the waves which propagate

into the Day motivated two theoretical/experimental studies

aimed at describing the generation of these finite amplitude

waves from an initial disturbance. The first of these, by Lee

and Beardsley (19741, associated the generation with the flood

phase of the tide (flow directed from the Gulf of Maine into

Massachusetts Bay). The generation is described in three

phases. First, it is postulated that a warm front forms from

a partial blocking of the incoming stratified flow over the

bank. Second, this large amplitude propagating front steepens

nonlinearly. Thirdly, the front disintegrates into a train of

solitary waves which result from the interplay between the
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nonlLnearity and the dispersion of the steepening front. Lee

and Beardsley modelled the evolution of such a solitary

wavetrain from a front-like initial disturbance numerically

using an internal Korteweg-deVries equation. The solutions

were compared with laboratory experiments for the second and

third phase of the proposed generation mechanism. Comparison

with Halpern's field data was also done for the end of the

third phase. These comparisons seemed to give reasonable

agreement with the observations.

Halpern's field observations and the explanation given by

Lee and Beardsley motivated a second study by Maxworthy

(19791. Maxworthy proposed that the waves were actually

formed from a disturbance created on the ebb phase of the tide

(the opposite phase from Lee and Beardsley's explanation). He

suggested the following sequence for the generation. The ebb

tide produces a supercritical flow over the bank which creates

a downstream depression or lee wave behind the submarine sill.

As the tidal flow slackens and turns, the depression advances

over the crest. The front of the depression disintegrates

into a train of solitary waves that propagate upstream Into

the decreasing flow and evolve according to KdV-type dynamics.

This physical situation was simulated in a laboratory model by

towing an obstacle through a stratified fluid over one half of

a tidal cycle. The period of oscillation was varied. The

amplitude of the tidal cycle and the ambient stratification

-. * -
-. . . . . . * ~
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were kept fixed. The flow was characterized in terms of an

internal Froude numbers two regimes were found. The first

regime is for Proude numbers exceeding Frm (m denotes mixing).

For this case the amplitude of the quasi-stationary

disturbance in the lee of the obstacle becomes so large that

it breaks and mixing occurs. As the tide slackens and turns,

waves propagate in both directions. Wave generation Is

hypothesized from two different mechanisms. Some are

generated from the nonlinear evolution of the front. They

advance upstream into the decreasing flow and evolve as

solitary waves. Others are generated from the collapse of the

mixed region. They propagate in both directions and are much

weaker. For lower values of the Froude number, no mixing

takes place. Only the solitary wavetrain is seen to evolve in

the direction of decreasing flow. As the Froude number

decreases a critical value, Frc, is reached below which no

waves are formed. By fitting observations to a sech*02

initial condition, the number of solitary waves are estimated

for both the experiments and Halpern's field observations.

Reasonable agreement is obtained for the experiments.

Although Kaxworthy also claims reasonable agreement with the

field observations, the number he gives seems at least twice

the observed number of waves. He gets 60 as his estimate.

Both by counting Halpern's waves and by estimating the number

of 6-0 min period oscillations that can occur in the 2.5 hour

span over which the waves are seen yields about 30 as an upper
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estimate. However, the main area of contention between

Maxworthy's explanation and that of Lee and Beardsley lies in

the phase of the tide that generates the disturbance. They

are in agreement on the evolution of the front into a series

of solitary waves according to nonlinear-dispersive theory.

Due to the different phase of the tide, the position of

generation also differs. Lee and Beardsley's hypothesized

evolution occurs inside the Bay west of the bank. Maxworthy's

waves are observed in the experiments to form directly over

the crest of the obstacle as the front of the disturbance

starts to come across.

From our experiment in Massachusetts Bay the waves which

propagate into the Bay appear to evolve according to

Maxworthy's hypothesis. They seem to be generated by the

steepening of the front of a large depression formed on ebb

tide. The front appears to disintegrate directly over the

crest of the bank. The nonlinearity of the waves and the

consistency of the phase speed estimates together with the

steepening and shortening of the stationary front point

towards an evolution governed by nonlinear-dispersive theory.

However, based on Haxworthy, this theory seems to overpredict

the number of waves. Also, the waves seem more weakly

dispersive than might be expected. This is pointed out by

Farmer and Smith for Haxworthy's results: they calculate that

the amplitude dispersion of the solitary waves should cause
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them to separate more rapidly than is observed. This weak

dispersion seems to be present in Massachusetts Bay also.

With the possible exception of the leading waves, the

wavelength within the group remains fairly uniform. From

three different sets of observations, each made in different

years and at different locations, we find a wavelength of 200

meters. Halpern observed a wavelength of 200 m at Station T.

9 km west of Stellwagen (Fig. 4.1). In their KdV model, Lee

and Beardsley estimated the location of the initial front

based on the wavelength and amplitude observed at Station T.

They estimated the front location to be 5 km west of

Stellwagen, which is the site of our observation of the

packet. The wavelength there was already of order 200 meters.

Lee and Beardsley made further field measurements and observed

the packet at a point 11 km west of the bank and found a

wavelength of 200 m. Of course, each of these observations

was made in different years.

There are also several similarities between the ebb tide

response and the quasi-steady lee wave theory of Farmer and

Smith. They see two different types of response to tidal flow

over the sill in Knight Inlet. The first type is most like

the ebb response in Massachusetts Bay and is characterized by

a single large isopycnal depression behind the sill. They use

the term hydraulic jump to describe this response# it could

also be a large breaking lee wave. It forms when the Froude



-312-

number is critical or just supercritical with respect to the

.- lowest mode and supercritical with respect to all higher

modes. The length scale of their jump is the same as the

length of the sill. We see the same type of length scale and

Froude number dependence in Massachusetts Bay. When the tide

slackens and turns, they see this jump collapse to form an

undular bore which propagates upstream into the decreasing

flow. Farmer and Smith disagree with Maxworthy's appeal to

nonlinear-dispersive theory to account for the generation of

the wavetrain. They see linear lee wave theory as accounting

for most of the observed features of both their observations

and his experiments. However, our observations seem to

support the evolution of a solitary wavetrain from the

observed steepening of the apparently stationary front.

The flood tide response in Massachusetts Bay is best

described by Farmer and Smith's second type of response. This

second type is the formation of a Lee wavetrain behind the

sill. This response is obtained for Froude numbers

subcritical with respect to the lowest mode but supercritical

with respect to higher modes. The length scale of the waves

is much smaller, on the order of the sloping portion of the

topography. We see the same Froude number dependence. Our

observed length scale is also smaller due to the bank's

asymmetry. Flow separation plays an important role In this

second type of response.
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In Knight Inlet, the generation of lee waves appears

delayed by flow separation on the downstream face of the sill

(perhaps by smoothing the obstacle shape as the flow sees it).

When the lee wave reaches some critical length, flow

separation is suppressed by the modification of the pressure

field on the downstream face of the sill by the accelerating

flow. Then a train of lee waves is able to form behind the

sill, controlling the boundary layer separation as the flow

speed drops. In Massachusetts Bay, the behavior of the second

clear feature in the acoustic record, the patch of

low-scattering bottom water. may indicate a similar pattern.

In brief, although our acoustic images are not clear enough to

detect the flow separation boundary. the bottom water we

observe Is probably behind the separation. and its movement

indicates a possible flow pattern. If this is indeed the

case, then a possible explanation for the low-scattering

properties of this patch of bottom water may be from the

turbulent mixing that takes place behind the separation point

from shear flow instabilities. In Figure 4.4A the patch of

water was observed on top of the sill crest, indicating flow

separation also occuring close to the crest. The lee wave was

already present. It may be the formation of the lee wave and

its continued presence that modifies the pressure field and

suppresses flow separation. By suppression we mean that flow

separation moves downstream of the crest, as shown by the

movement of bottom water to the east (Figs. 4.4B-4.4D). As
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the flow speed drops and the front shortens and steepens, the

bottom water advances up the sill, indicating possibly that

flow separation occurs near the crest again (Figs.

4.4E-4.4H).

4.5 SUMMARY

This study in Massachusetts Bay shows the importance of

in-situ observations In determining the flow response in a

complex physical situation. The large amplitude and asymmetry

of the topography are seen to be crucial elements to the

behavior that was observed. There are few theoretical or

laboratory studies which examine these effects. The response

on ebb tide is consistent with the laboratory experiments of

Maxworthy (19791 and shows the formation of a single massive

depression in the thermocline downstream of the sill. As the

tide slackens and turns, the front of this depression

disintegrates and gives rise to a train of solitary waves.

The formation of a single depression when the Froude number is

supercritical with respect to all internal modes agrees with

the observations by Farmer and Smith in Knight Inlet 11980a).

The evolution of a wavetrain according to nonlinear-dispersive

theory disagrees with Farmer and Smith's model for the

'. propagation of a lee wavetrain. However. a lee wavetrain best

describes the flood response. On this phase of the tide. a

lee wavetrain forms downstream of the sill and propagates
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upstream Into the decreasing flow when the tide turns. The

Froud* number during maximum flood is just subcritical with

respect to the lowest internal wave mode and supercritical

with respect to all higher modes. Besides the difference in

Froude numbers, the response length scale and duration also

differ markedly between the two phases of the tide due to the

asymmetry of the bank. The time and length scales on ebb tide

are longer than those on flood, the length scales on the

respective phases of the tide are on the order of the

topographic slope.

As in previous studies, we have tried to classify the

behavior with a Frauds number dependence. In a continuously

stratified fluid, where a finite amplitude disturbance is

generated by flow over a large amplitude obstacle ( with the

possibility of upstream influence or partial blocking), it is

unclear what the appropriate parameter for describing the flow

should be. To our knowledge, the study by Farmer and Smith

was the first to attempt such a.classification of oceanic sill

flows. Our Fraud* number results for the ebb and flood tide

fall into the two main types of response categorized by them

and seem to give good agreement with their observed behavior.

despite the considerable difference in topography and

stratification. Additional oceanic observations in differing

situations are needed to obtain a more complete

classification.

-. * -.
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CHAPTER 5

CONCLUSIONS

In this thesis we have applied some of the wealth of

existing theory of nonlinear waves to observations of surface

and internal wave group development.

5.1 SURFACE WAVES

The surface wave observations show the long-time

development of surface gravity wave packets In a laboratory

wave channel. The groups examined are constant amplitude.

single frequency wave groups for a variety of Initial wave

eteepnosose and group lengths. The evolution of amplitude.

phase and frequency modulations with distance is described.

The modulations were obtained using the Hilbert transform.

The most Important effects that we observed yore the

cumulative effect of dissipation and, for groups of sufficient

steepness, the downshifting of the carrier frequency. At the
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.

final observation, the wave packet's energy was typically 25

per cent of Its Initial value. Damping coefficients estimated

from the observations were in reasonable agreement with

theoretical estimates. The downshifting in wave groups is

different from that previously observed in continuous

wavetrains. Although the peak frequency downshifts, as

estimated from maximum entropy spectral estimates, not all the

groups have the downshifted frequency. Rather, the modulation

sorts into a succession of groups. The leading groups are of

4 larger amplitude and lower frequency than the trailing groups

which are of the initial carrier frequency.

There Is almost no variation In the initial phase or

frequency modulation within the group, as Imposed at the

wavemaker. Small variations are seen to develop with

propagation distance as well as small regions of quite large

variation. These regions of large variation correspond to

local reversals in phase or jumps located at local amplitude

minima. At times of minimum modulation, the phase Is fairly

uniform. When the modulation is Is growing or decaying. with

amplitude minima or nodes located within the group. we see

jumps in phase at node positions. Melville (19813 has

suggested these jumps may be the mnchanisu of crest pairing 
9

observed by Ramamonjiarisoa and Mollo-Chlzatenaen (19793.

Crest pairing may be the visual manifestation of the frequency

downshifting.

Jfl-. r-r r. * * -.- * - * * *- - * . -. -~ - *- - - - * .
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The amplitude and phase modulations at the most upstream

value of fetch were specified as an initial condition to the

cubic nonlinear Schrodinger equation. which was then allowed

to evolve numerically. A dissipative form of the NLS equation

was also solved numerically, with damping coefficients

estimated from the observations. By analyzing the evolution

of exact asymptotic solutions it was seen that the phase

modulations could be used to characterize the type of

behavior; linear dispersion, soliton, bound state. etc. We

used the exact solutions as a guide in Interpreting and

comparing the long-time observations with the numerical model

evolutions.

It appears that dissipation rules out the possibility of

recurrence. The bound state was not observed in the sense of

recurrence of the initial condition, but the wave groups did

exhibit long-time coherence. This could be best be seen In

the phase evolution. Dissipation typically becomes Important

over half the evolution distance. The frictional NLS equation

modelled the long-time evolution extremely well. Although the

form of the dissipation term had a direct effect only on the

amplitude modulation, there was an indirect affect on the

phase.

Some problems for further study are suggested by these

results. Careful experiments to examine the dissipation of

* . . . . . . . . .
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surface waves are needed. In particular. an investigation of

the effect that a higher order dissipation might have on wave

phase. dispersion and frequency downshifting is suggested as a

consequence of our results. Another question we pose Is that

of the mechanism of the frequency downshifting. Finally, an

application of nonlinear wave theory. in light of experimental

investigations, to ocean waves is needed. Demodulated surface

swell (using the Hilbert transform) from the CODE experiment

exhibits the characteristics of weakly nonlinear waves [Bill

Grant. personal communication). These are the only ocean data

that we are aware of to be analyzed in this manner, and the

results look quite promising.

5.2 INTERNAL WAVES

The Internal wave study looked at the generation of

packets of large amplitude internal waves resulting from tidal

interaction with a submarine sill. The flow response was

classified with a Froudo number dependence as in the study by

* Farmer and Smith 11980a,bJ. The Froude number results for the

* ebb and flood tide fall into two different categories. The

ebb response shows the formation of a single large depression

In the thermocline downstream of the sill. As the tide

slackens and turns, the front of this depression disintegrates

and gives rise to a train of solitary waves. On the flood

tide, a Iee wavetrain forms downstream of the sill and
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propagates upstream when the tide turns. The response length

scale and duration differ markedly between the two phases of

the tide, due to asymmetry of the bank. This study focused

primarily on the generation. The propagation of the packet

formed on ebb tide has ben well documented in previous

studies (Halpern 1971a.b, Haury. Briscoe and Orr 19791. The

wavetrain formed on flood tide should develop differently, and

its propagation has not ben observed. Observation of these

waves is suggested as further work. Also, additional Froude

number classifications of oceanic sill flows in different

situations are needed to obtain a more complete classification
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